

IrrEEgation: Final Report

By: Tyler Dale, Nicolas Garcia, Ellen Halverson,

Kenneth Harkenrider, and Trenton Kuta

Table of Contents

Introduction 2

Detailed System Requirements 6

Detailed Project Description 9

System Integration Testing 28

User's Manual/Installation Manual 31

To-Market Design Changes 36

Conclusions 38

Appendices 39

1

Introduction

Flood irrigation is a process vital to the southwestern region of the United States. Flood

irrigation denotes a process in which a field is soaked in a film of water. Typically, this is

accomplished by opening a valve that causes water to surge at a high volumetric flow rate.

While this water begins covering a field quickly, it becomes a thin film of water as it travels

farther from its source. This film slowly covers the field until all the crops are watered. The

larger the field, the longer it takes for a flood to be completed.

Unfortunately, farmers must carefully monitor the progress of the water. Allowing the

water to flow from the source longer than it should greatly increases the amount of water used in

a cycle, negatively impacting the environment by wasting water and affecting other farmers or

civilians if water reaches their fields or roads. On the other hand, it is essential that the film of

water reaches all crops in a field; otherwise some crops may not yield produce. A tight window

exists in which all crops have been watered, but extra water has been minimized. At this time, a

farmer must leave his house and manually shut off the valve controlling the water flow.

However, this window is unpredictable. Factors such as wind, temperature, and

inconsistent water pressure can vary the rate and direction of the film of water. As a result, a

farmer must constantly check the level of the water during the flooding process. For large fields,

the flooding process can take anywhere from 24 to 36 hours. Toward the end of this period, the

farmer must periodically walk the field at any hour of the day or night to check the water level

and determine whether or not the water should be shut off. To make matters more difficult, the

flooding process needs to be completed every two to three weeks. As a result, a great deal of a

2

farmer’s time involves him or her being confined to his or her property and manually controlling

the flooding process. Rather than taking up an unnecessary amount of a farmer’s time, the

process of monitoring and controlling the flooding can be automated with a system involving a

central hub, a web app, water sensing pylons, and a motorized valve.

The IrrEEgation Control System is managed by a central hub that monitors device

statuses and user commands. Based on user inputs and device statuses, the central hub wirelessly

relays commands to the other components of the system. The hub can be set up at the user’s

residence or somewhere near the irrigating field; it only requires source of 120 VAC as provided

by a typical power outlet. Theoretically, a DC battery could run the hub as well, but 120 VAC is

used since the central hub is meant to be placed in the user’s home, where power outlets are

abundant.

The hub identifies with several water-sensing pylons. Knowing his or her field, the

farmer can place the pylons in the most advantageous positions to monitor the presence of water,

such as near the edge of the field, to ensure the valve shuts off. The pylons, powered by a

photovoltaic and lithium ion battery system, can sense the film of water and relay this status to

the hub. If any valve are linked to that pylon (per the user’s instruction), the valve will

automatically close.

The valve itself is simulated by a linear actuator motor rated for the force required to

open a floodgate. Based on the state of board-mounted relays, the motor can extend or contract,

simulating the opening or closing of the actual floodgate.

3

Finally, a web app can be accessed to observe the flood progress throughout the process.

The web app writes to the directory containing files and instructions for the devices and prepares

the commands to be sent out.

 At the end of the semester, the final product met the basic requirements for having a

well-functioning system capable of doing what was intended. At the final demonstration, the

pylon was able to be placed in either an awake or sleep state from commands issued from the

website interface. In the awake state, the pylon successfully reported its status (wet or dry) to the

the central hub and listened for commands from the user. If the user did not detail new

commands for the pylon, the pylon defaulted to its prior sleep setting and continued monitoring

moisture.

The pylon battery was successfully charged from the photovoltaic cell. The pylon was

added and removed from the system easily, and the pylon’s abilities to connect to the server and

remember its identity worked better than expected - the modular naming and syncing functions

were present. More importantly, the valve responded appropriately to the status of the pylon

associated with it. However, there were two major areas in which our design fell short. Due to

the lack of continuous sunshine in South Bend, the solar charging system charged the battery

very slowly. Thankfully, the battery’s ability to hold a sufficient amount of charge for a long

period of time compensated for the slow charging capability. It’s important to note that this

system was designed to function in areas with powerful and consistent sunlight, such as New

Mexico, and the constant sunlight in these locations would eliminate this liability. The other

major shortcoming in the design had to do with controlling the valve - it was not as

straightforward as the team had hoped. A single valve board did not have the stability to both run

4

the onboard microcontroller and power the relay/actuator system. For the device demonstration,

the team compensated by wiring two identical boards together.

Aside from these small hurdles, the system performed very well. The server read from

and wrote information to the device directory in real time and in tandem with the looping

functions; there was minimal disconnect between the user web application interface and the

actions/status of the devices. Overall, aside from a lag built into the device sleep/awake cycles,

the system as presented to the user was seamless, straightforward, and robust.

5

Detailed System Requirements

The current system for flood irrigation is ineffective, time-consuming for farmers, and

wasteful of precious natural resources, which are already scarce in the region. In order to address

each of those issues and to make the process more efficient, the previously necessary manual

checks done by the farmer will be done reliably by a system of water-sensing pylons and

automated valves. Ultimately, the system must allow the farmer to monitor the water levels

remotely with confidence.

In order to adequately monitor the flood irrigation on a farm, the irrigation system has to

maintain a minimum resolution; it needs to check the status of the water often enough to give the

farmer useful real time information. Furthermore, it is unrealistic to expect the farmer to

understand file maneuvering or circuit repair; the whole system must be user friendly. That

being said, the general overlay of the system (water sensing pylon, valve device, and central hub)

must be accessible and clear. For this reason, the team decided that an interactive web app should

be part of the hub as the interface for the farmer.

First, the central hub must be responsible for supporting the communication framework

for the pylons, the user interface, and valves. The central hub needs to continuously track data

from all devices, publish this data to its interface, and relay commands from the user to the

devices. Most importantly, the hub needs to perform these actions in real time, constantly

checking data and responding immediately to the user’s commands. The hub must also be a

wireless device in terms of how it interacts with the devices in the field. It does not need to be

6

self powered (it may be an appliance in the user’s residence or near the field) but it must have

adequate range to maintain sufficient communication.

The necessary interface must be part of the central hub - or at least associating extremely

closely with it. The interface must display the status of all pylons and all valves to the user in real

time in addition to giving the user an array of options to affect the system with. These options

include: renaming a device already on the system, resetting a device on the system, setting

devices to awake or sleep mode, syncing devices, commanding valves to open or close, and

assigning a valve to a pylon. The interface must clearly present the options and promptly carry

out the user’s orders.

The pylon subsystem must have a reliable and accurate means of determining whether or

not water is present. The moisture sensor itself must be either cheap and easily replaceable or

robust and long lasting if installation is bothersome. As a standalone wireless system, the pylon

must also have adequate range (at least 200 m) and wireless capability to keep the hub notified of

its moisture status. This also implies that the pylon system will need an independent source of

power, most likely a solar cell-battery combination. The pylon system will also need a mode of

regulating down time; it will need sleep and awake functionality for efficient energy use during

different duty cycles. This also implies that crucial information for the function of the pylon

needs to be stored in some sort of non-volatile memory. If the system goes down, it needs to

remember any necessary wireless credentials or process-critical information upon boot. Finally,

the pylon system will be standing out in a field for several weeks at a time - it needs to be robust

and weather resistant.

7

The valve system has similar constraints to the pylon system: it must communicate

wirelessly with the hub and receive instructions remotely. In addition, it must successfully open

or close in response to commands from the hub. It is also critical that the status of the valve be

reported back to the central hub and to the farmer by extension. As with the pylon, the valve’s

wireless communications must be reliable and robust. Because the valve system has to be a

wireless node, it faces the same power and range constraints of the pylon system. However, in

addition to needing at least 200 m of range, the valve system also needs sufficient independent

power to open or close the motor. Of course, the valve also needs to be weatherproof, have

sleep/awake capabilities, and be able to store essential identifiers to non-volatile memory.

Additionally, from a system perspective, the valve must close in response to its assigned

pylon’s “wet” signal. However, this command path may also be routed through the hub.

 In reality, the valve is a large metal panel, which is raised or lowered in order to seal a

water pipe. This arrangement is impossible to build for and test given the team’s budget

constraints. Rather, the team has chosen a more reasonable constraint: the action of opening or

closing can be simulated with a small, powerful linear actuator.

These are the most pressing constraints the system as a whole needs to address in order to

guarantee a user friendly interface with maximal functionality.

8

Detailed Project Description

System Theory of Operation

This product combines several devices via wireless MQTT communications to create an

autonomous irrigation system. The system incorporates a user interface, valves, pylons, and a

centralized hub, which, together, are able to monitor and control the presence of water in the

field. Operation begins and ends with the valves. When the user wants to begin irrigating his or

her crops, he or she can remotely open any valve using either the app or the LCD touch screen on

the hub. The hub then sends an “open” command via MQTT to the valve. Once the valve is

opened, water begins flowing throughout the field. When a pylon senses the presence of water, it

relays this information to the central hub. The hub processes this information and writes it to the

relevant file in the database. The app updates to reflect the new information and the user is able

to monitor the status of all available pylons throughout the irrigation process and remotely close

the valve at any time. Alternatively, the user can also choose to have any valve close

automatically when a specific pylon is triggered. In sum, this system completely automates the

flood irrigation process while also providing options for manual control and customization.

9

System Block Diagram

Figure 1. Block diagram showing connections between each subsystem.

10

Figure 2. Block diagram for the central hub.

11

Figure 3. Block diagram for the pylons.

12

Figure 4. Block diagram for the motor.

13

Figure 5. Block diagram for the user interface.

14

Subsystems: Valve

Software

For the wireless communications protocol, MQTT was chosen. MQTT is ideal because

of the abundance of resources (found both in online forums and IDE libraries) and its relative

ease of implementation. The MQTT code is enveloped in the general C code for the pylon

microcontroller, programmed from the Arduino IDE. The Arduino IDE is employed for

convenience; MQTT and microcontroller code are free, readily available, and easily uploaded

into a microcontroller.

The microcontroller on the valve is an ESP8266, so chosen because of its Wi-Fi

capabilities. The chip itself does not need to perform any heavy computations and is primarily

the medium of relaying moisture measurements. A desirable aspect of the ESP8266 is its ability

to enter deep sleep. This is also a system requirement, as the valve will go long stretches of time

where measurements will not be needed, such as when irrigation is not taking place.

A critical constraint on the microcontroller is non-volatile memory. Whenever the valve

activates or wakes from sleep, it will need to know the Wi-Fi credentials of the hub. In general,

these will be saved into the ESP8266’s EEPROM from the last sync operation. If the valve does

not have these details saved, it becomes a Wi-Fi access point and allows the hub to connect and

transmit its credentials. These details are written and saved into the EEPROM for future

reference and can be erased in the event of another sync. A push button is included on the valve

to allow manual initiation of a sync and an LED is included to indicate sync progress.

15

The valve wirelessly updates the hub with frequency that depends on whether or not the

valve is in sleep or awake mode. In both modes, the valve undergoes an amount of sleep before

running an active cycle; the sleep and awake modes only dictate the length of that time. In

practice, a wake/sleep command from the hub determines how long the valve will sleep before

undertaking the next cycle. This means that the valve’s activity is regulated on a cycle-by-cycle

basis from the hub. Each of these cycles consists of the valve waking up, reading its non-volatile

memory, connecting Wi-Fi/MQTT, opening and closing based on hub instructions, and finally

listening for commands from the hub before sleeping again.

The details of this process can be found in the Appendix C . Here the full listing of the

code is shown with comments highlighting the process flow.

Hardware

Solar Battery Charging Subsystem

 One of the major requirements of the Flood IrrEEgation Control System is that the pylons

and the valve do not need to be removed during irrigation. A consequence of this requirement is

that the pylons and the valve need to be able to run off battery power for a considerable amount

of time.

To counter the possible issue of the batteries draining below operable levels during

irrigation, each pylon and valve includes a solar charging subsystem. This subsystem is built

around the LT3652, a power tracking battery charger chip produced by Linear Technologies.

The LT3652 takes the voltage drop across a solar panel and outputs a variable voltage and

current. A general schematic for a typical application can be found below in Figure 6.

16

Figure 6: Typical Application Schematic for the LT3652

Some important parameters considered when choosing this device was the minimum

input voltage (4.95 V, which was less than the 18 V solar panel used in the design), output

current (up to 2 A), and output voltage (up to 14.4 V, which is greater than the valve board’s 12

V). To adapt the LT3652 to the specific application required for the Flood Irrigation Control

System, three parameters were set: the input regulation voltage, the feedback voltage, and the

current output.

One of the options that the LT3652 offers is a minimum supply voltage regulator. If the

voltage on the pin is less than 2.7 V, the LT3652 ceases to operate. For the Irrigation System,

this value is set at 4 V because this is the minimum voltage required to charge the one cell

LiPoly. This is accomplished using a 4.7 kΩ resistor for RIN1 and a 10 kΩ resistor for RIN2. These

resistors correspond to the 530 kΩ and 100 kΩ resistors on the input side of the LT3652 on the

17

Typical Application Schematic previously marked as Figure 6. The equation relating the resistor

values, the set minimum operating voltage, can be seen below in Figure 7.

Figure 7: Equation for setting the Input Regulation Voltage

The LT3652 has the ability of charging batteries with voltage ratings from 3.3 V to 14.4

V. This output charging feedback voltage is set via a voltage divider across the VFB pin on the

output side of the LT3652. The equations used to determine the resistor values for this voltage

divider come from the datasheet and can be found below in Figure 8. The valve and the pylon

board have different voltage requirements, 12 V and 4 V, respectively, so different resistor

values were required for the boards. On the valve board, R1 was chosen to be 931 kΩ and R2

was chosen to be 340 kΩ. For the pylon board, R1 was set at 312 kΩ and R2 was set at 1.27 MΩ.

These resistors correspond to the 542 kΩ and the 459 kΩ resistors, respectively on the output

side of the LT3652, as seen in the aforementioned Figure 6.

Figure 8: Equation for setting the Output Feedback Voltage

The last major characteristic set using hardware components was the charging current

maximum. This current was set using two .22 Ω resistors in parallel, resulting in a practical

resistance of .11 Ω. The output current was set this high as to minimize the time required to

charge the batteries. Unfortunately, the output power was too large for the chip to handle, so the

resistance was increased to 1.5 Ω. The equation describing the relationship between the

18

resistance and the charging current maximum can be found in Figure 9. This resistor matches

the .05 Ω resistor found on the output side of the LT3652, as seen in Figure 6.

Figure 9: Equation for setting the Maximum

In addition to the resistor values set in the last three steps, a few other minor changes

were made to the suggested circuit. The thermistor, used to shut down the LT3652 in extreme

temperatures, was omitted due to the concern that a thermistor may get hot under normal

operating conditions in the New Mexican sun. Also, the direct connection between the output of

the solar and the battery was disconnected in order to force all current, stable or otherwise,

through the stabilizing chip.

ESP8266 and Antenna

 For both the pylon and valve boards, the base ESP8266EX microchip is utilized with

separately mounted components, including a crystal oscillator, flash memory chip, and antenna

hookup.

The crystal oscillator chosen for this project is the TSX3223, which was chosen because

the oscillator runs at the required 24 MHz and is stocked at Notre Dame. The oscillator is paired

with two closely mounted 10 pF capacitors to smooth out the clock. Also included near the

ESP8266 is the AT25SF041 flash memory chip, which was chosen because SparkFun utilizes the

chip in its ThingDev board. The antenna connection was specially designed for this project. The

input impedance of the ESP8266EX was determined to be 50 Ω, so the trace width between the

19

microcontroller and the antenna hookup was 50 Ω. This was determined using the ADS package

with help from Dr. Chisum.

In addition to the standard operation requirements, the ESP8266EX on these two boards

control and read a variety of different input and outputs. On both boards, GPIO5, set in input

mode, is pulled high until an external button is pushed, at which time the pin is pulled low, and

the ESP8266 enters sync mode. GPIO4, set in output mode, is set high to power an LED

indicating communications with the central hub are functioning. The ADC pin, also marked as

“TOUT”, connects to the signal port of the humidity sensor to determine the presence of water.

GPIO12, set in output mode, turns the humidity sensor on and off. For the valve board, GPIO13

and GPIO14, both set in output mode, respectively control direction of and power to the linear

actuator. The exact method of this control is explained in a following section, and a schematic of

the entire system can be found in Appendix A.

Humidity Sensor

 The main purpose of this system is to determine the presence of water at a point in the

field; this sensor accomplishes that goal. The sensor used is a resistive SparkFun Soil Moisture

Sensor. Based on the conductivity between the two probes on the sensor, the sensor outputs an

analog signal. This signal is routed through a unity gate buffer, which for this project is a regular

operational amplifier, and is passed to the ADC pin of the ESP8266EX. Power to this sensor is

controlled using an NPN transistor, controlled by GPIO12 on the ESP8266EX, between VCC

and the sensor’s source voltage. A picture of this sensor can be found below in Figure 10.

20

Figure 10. SparkFun Humidity Sensor

DC to DC (Valve)

 For regulating the VCC for the pylon board, a TPS54202H was placed on the board. This

chip was chosen as the TPS and can output a 3.3 V signal with up to 20 V input (the pylon board

uses a 12 V LiPoly battery), and does not waste much power. The TPS54202H was installed

exactly matching the datasheet.

Linear Actuator Control System

 The primary purpose of the valve board is to open and shut the floodgate. This goal is

accomplished using a system of transistors and relays to control the power and polarity of a

fill-in linear actuator. Two NPN transistors control current flow through the coils of a SPDT

relay and a SPST relay. These relays were chosen to use the 12 V supply already present as well

as the relatively low current draw when the coils are on. The SPST relay connects the actuator to

ground with no current through the coils and connects the actuator to power when current is

applied to coils. The other relay, the SPDT, switches the polarity of the voltage (when the SPST

relay is on) across the monopole linear actuator. The SPST transistor is controlled by GPIO14

from the ESP8266EX, while the SPDT is controlled by GPIO13. A diagram of this system can

21

be found in Appendix A. Finally, the linear actuator used for the pylon board is the

ECO-WORTHY 10" (250mm) Stroke Linear Actuator. This actuator was chosen because it can

handle a 330 lb load with only 12 V. A picture of this actuator can be found in Figure 11.

Figure 11: ECO-WORTHY 10"(250mm) Stroke Linear Actuator

Subsystems: Pylon

Software

The software for the pylon is nearly identical to that of the valve. The code commands

the device to check its EEPROM upon waking and either enter standby mode or jump straight

22

into MQTT depending on whether the identifiers are found there. However, instead of sending an

“active” signal to the hub, the pylon reads its moisture sensor and sends the sensor status (“wet”

or “dry”) to the hub. From there, it erases any EEPROM if a reset or identity reset command was

sent and proceeds to sleep. This full code with comments can be found in Appendix B.

Hardware

The hardware for the pylon is more or less identical to the valve board, minus the absence

of the Linear Actuator Control System and a different TPS. For regulating the VCC for the pylon

board, a TPS61201 was placed on the board. This chip was chosen as the TPS is stocked at

Notre Dame, outputs a 3.3 V signal with up to 5 V input (the pylon board uses a 3.7 V LiPoly

battery), and does not waste much power. The TPS61201 was installed exactly matching the

datasheet.

Subsystems: Central Hub

Software

The software requirements for the Central Hub include interfacing with and running the

web application, communicating with devices, and processing information. The bulk of the hub

software was written in Python, one of the Raspberry Pi’s native programming languages.

Python was chosen over other potential languages because of ease of implementation,

functionality and flexibility, and availability of resources.

The hub is the MQTT broker and the single unifying subsystem; it communicates with

the app, pylons, and valve and relays messages between them (per the Publish/Subscribe format).

As such, it is currently a Raspberry Pi 3 and is the single most intelligent subsystem.

23

After the initial setup of the Raspian OS, the Mosquitto MQTT broker and client are

installed on the Raspberry Pi in order to host and publish and subscribe using MQTT. The team

tested the device’s MQTT capabilities using an MQTT simulator, MQTT.fx, and was

successfully able to publish and subscribe between multiple devices over the new broker.

Figure 12: Flowchart of Hub software

In order to create and interface with the web app, the Flask language, a Python subset,

was used. Flask acts as a bridge between raw Python code and HTML, essentially triggering

Python functions upon visiting an HTML webpage. By implementing Flask, the team was also

24

able to develop the Hub’s business code and professional code separately, rather than in large,

complex, integrated scripts.

To process the incoming and outgoing information, the team decided to develop a

centralized file directory system that would organize and store all of the necessary data. This data

could then be relayed directly to and from the web app natively running on the Raspberry Pi and

communicated to all connected devices over MQTT. MQTT wireless protocol was incorporated

into the hub scripts using the Paho MQTT library for Python. The hub could then publish

commands to the MQTT topics that the devices would be listening to and also subscribe to the

topics that the devices would be publishing to.

Essentially, the hub holds two lists at all times. The first list contains details on every

pylon connected to the hub and includes qualities such as their names, connection statuses, and

whether they are wet or dry. The second list contains details on every valve connected to the hub

and notes details similar to those of the pylons. The hub then runs in an infinite loop over

MQTT, during which time it automatically updates the statuses of all valves and pylons

approximately every thirty seconds. This system is entirely autonomous, leaving a reliable

system that the farmer does not need to monitor or worry about. That being said, the user can

monitor and command the hub at will using the app.

Because the Hub was designed to run constantly on AC power at home, we developed a

looping function that would read all device statuses and send commands based on these statuses

and other received information. The looping function, as well as the web app server and IP

address functions, can be found in Appendix D.

25

When completed, the Hub subsystem was first tested by running the looping, IP address,

and web app server scripts together and simulating MQTT communications with MQTT.fx.

Then, further testing was done to incorporate working pylon and valve devices.

Hardware

As mentioned above in the software requirements, a Raspberry Pi 3 was incorporated as

the central hub. A 3.5 inch Kuman TFT touchscreen was also included to allow the user to access

the web application without the need of a separate wireless device. Finally, we designed and

built a 3D printed shell for the Raspberry Pi for protective and aesthetic purposes.

Subsystems: User Interface

Software

The software requirements for the user interface include interfacing with the Hub and

with the user. As stated above in the Hub requirements, we implemented the Flask programming

language to bridge the gap between the functional Python code and the HTML code of the actual

user interface. We decided to develop a web application rather than a typical mobile application

so that it could be accessed on any wirelessly-enabled device.

The main way the subsystems interface and communicate with one another is through the

MQTT server, which has been described above. In the Raspberry Pi linux system there is a

directory which holds text files, each of which corresponds to either a pylon or a valve.

Whenever a pylon or valve is synced to the system, the text file is generated. Inside the text file,

is the the devices identity, state whether it is asleep or awake, ID reset, reset connected valve or

pylon, and whether it is wet or dry if it is a pylon or open or closed if it is a valve. Each time the

26

pylon/valve wakes up it sends a status report via MQTT to the central hub, which is constantly

looping and looking for this data. As soon as the hub receives the information it edits the file and

saves the new status. Simultaneously, the web interface is constantly checking and reading those

text files and updates the status of the device on the website. Similarly, whenever the user alters

information for a given device, this central hub changes the information in the text file.

Therefore the next time the device wakes from sleep, the alterations to the text file will be

transmitted as commands across MQTT, and the status of the device will alter to meet those

changes.

27

System Integration Testing

Description of how the integrated set of subsystems was tested

With the complex array of subsystems comprising this project, testing was expansive and

complicated. The main test the project needed to pass involved taking inputs from the pylon,

reading from both the hub and the app and demonstrating the ability to open and close the valve

from both the hub and the app.

First, the moisture sensor needed to be tested. For this, the sensor and its circuit were

connected directly to a computer and the computer’s terminal was read. The circuit and code

was adjusted until the terminal correctly read “dry” when no water was present and “wet” when

water was present.

Next, the solar charger was tested. Unfortunately, this was not as simple as taking out the

battery and checking for a proper open circuit voltage (approximately 4.95 V). The LT3652

identified a battery fault when the battery was not attached, causing it to withhold power such

that only 0.36 V ran across the battery port. Instead, the status registers of the LT3652 chip were

read when the battery was plugged in and in good sunlight. When this was done, the CHRG

register was high and the FAULT register was low, signifying normal charging.

To test the motor board, the relay switches first needed to be tested. This was done by

simply having them alternate from low to high periodically and reading associated pins to make

sure they were switching when directed. Next, the linear actuator was added. Originally,

problems were experienced when the linear actuator was applied. Part of this was a result of an

AC signal coming from the motor. This was omitted by connecting a capacitor between the

28

linear actuator’s leads. However, the system still experienced problems. The small capacitor

connected between the leads was not rated for the voltage spike that occurred when the linear

actuator switched polarities. This voltage spike was a result of a rapid change in current (V =

L*dI/dt). By connecting 150 V capacitors between each lead of the linear actuator and ground,

this problem was reduced.

However, the valve board still had problems. Unfortunately, the system only worked

when one battery powered the relay switches and linear actuator, while the other powered the

ESP8266. To account for this discrepancy, two identical boards were connected by their ground

planes, GPIO13 pins, and GPIO14 pins. This solved the problem and allowed the entire system

to work as expected.

The final key to the project that needed to be tested was range. The team determined that

200 m of range was necessary for this project to sufficiently account for the size of most farms

that use flood irrigation in the southwest United States. Using the PCB antenna built into the

SparkFun ThingDev, however, only 150 m of range were obtained. As a result, three 9 dBi

antennas were attached to the central hub’s router and a 2 dBi external antenna was applied to

both the pylon and the valve. As a result, the signal’s range rose to 250 m, which exceed the

minimum.

Description of how testing demonstrated that the overall system meets the design

requirements

The testing done on this system proves the effectiveness of the product in all the design

constraints originally set out by the team. Detailed system requirements are meticulously

29

outlined in the section titled “Detailed System Requirements.” The first requirement is a central

hub that establishes and maintains two-way communication with the motor, valve, and app and

directing those three subsystems appropriately. The tests done demonstrated the hub’s

effectiveness in accomplishing these tasks. Additionally, the hub is capable of communicating

over a distance of 250 m, which exceeded original expectations and requirements. Furthermore,

the pylon meets its design requirements, as shown through testing of its solar charging

capabilities, ability to sense water, connect to an MQTT server, and communicate with the

central hub. The valve also met its design requirements by opening and closing the linear

actuator remotely. A metal valve was not raised or lowered (as originally planned) since doing

so in a way that would be applicable to flood irrigation in the real world would exceed the budget

constraints placed on this project. Finally, the app is able to make commands to the hub, which

can then be relayed to the pylon or valve. Additionally, the status of all pylons and valves can be

checked from the app.

30

User Manual/Installation Instructions

Setup/Installation

By design, the product is very easy to set up. Installation follows three steps: bringing the

hub and server online, syncing devices, and placing devices in the field.

First, the hub must be active and the web app up and running. To ensure this, open the

Raspberry Pi’s Terminal window after booting up to launch the application.

Second, the devices must be synced. It’s important to note that only one device may be

synced at a time, as all devices use the same wireless pathways for syncing. Both pylon and

valve devices follow the same syncing procedure. First, make sure that both the hub and the

devices to be synced are on. The hub should be displaying the web app main page and the light

on the device should be blinking very slowly (two seconds on two seconds off). Bring the device

near the hub (within ten feet); proximity makes the sync work faster. Press the button on the

device and hold down for about a second. The led will now start blinking faster (about one

second on, one second off). This indicates the the device is initiating a wireless access point to

receive information from the hub.

On a computer or phone, connect to the router’s Wi-Fi. Then, access the web app by

going to the URL http://192.168.0.100:5000. The web app main page should come up - select the

sync command. The user will be prompted to input a name for the device and specify whether it

is a pylon or a valve; we recommend naming the device something easy to remember and easy to

associate with its position or role in the field. Press “enter”; the web app will remain motionless

for a few minutes while the sync completes. When it is done, the device LED will blink rapidly

31

before remaining lit in the “on” position. This indicates that the sync was successful and the

device was successfully connected and is awaiting instructions. On the web app, the newly

named device will show up under the list of devices (depending on whether it’s a pylon or a

valve). The device will periodically go dark as it goes into sleep mode after receiving

instructions from the hub. Repeat this step for every device you wish to bring onto the system.

Finally, the devices must be set in the field.

For a pylon: unscrew the nuts binding the PVC tube and solar configuration to the metal

stake. Disconnect the moisture sensor from the casing by detaching the small white connector.

With the metal stake completely detached from the casing, drive it into the soil wherever a

position should be monitored; a hammer may be useful here. After loosening the nuts on the

moisture sensor carriage, slide it up or down the shaft of the metal stake until the tips of the

moisture sensor are about one centimeter off the ground. Holding the casing close to the stake,

re-attach the white connector to the moisture sensor; tighten the nuts on the sensor casing.

Finally, fit the screws of the casing through the holes on the stake and use the nuts to fasten the

casing securely to the stake. With the pylon synced and in the ground, it is ready for operation.

For a valve: Adjust the solar panel so that it’s facing straight up and adjust the antenna so

that it’s perpendicular to the ground. This part of installation is very modular and depends on the

current floodgate configuration. However, as long as the plate of the floodgate can be securely

fastened to the end of the linear actuator (by use of a screw or similar fastener) and the plate is

not heavier than 100 lbs, the system will function adequately. Securely fasten the base of the

linear actuator (the thicker part) to the frame of the floodgate. Be sure that the valve circuit

boards are protected from the elements but all connections are secure.

32

At this point, all components are set and functional. Open the web app on a phone or

computer; all the synced valves and pylons should be on their respective pages. To set the

devices to awake mode (for an irrigation cycle), click on the “Sleep/Awake” button and click

“Awake” in the next page. Or, to put devices in stasis, select Sleep from the same page.

To change the name of a device, navigate to it in its respective list and click the Manage

button. Click “ID Reset”; the user will be given an input to enter the new name of the device;

press “enter” after typing in the desired name. The device will now show up as “Syncing” in its

list. After a minute or so, the device will be appropriately connected and will show up as its own

name.

To pull a device off the network (reset), navigate to it in its respective list, click the

Manage button, and click “Reset”. The device can now be synced to the same hub or another hub

following the sync instructions as given above.

To open/close a valve, navigate to it in the the Valves list, and click “Manage”. If the

valve is open, the user will have the option to close it and vice versa.

To assign a valve to a pylon, navigate to the pylon in the Pylons list and click “Manage.”

Click “Assign Valve,” and choose the desired valve from the dropdown menu. The valve name

should show up in the Pylons list in line with name of the pylon it’s associated with.

How the user can tell if the product is working

Regarding the devices: the LED indicator should flash quickly, then stay on for anywhere

between ten seconds and a minute then going dark to repeat. This indicates that the device is

waking up, communicating with the hub, then going to sleep.

33

Regarding the hub: when looking at the webapp, the status of a pylon should change

within one minute of it transitioning between wet and dry. The correct sleep and awake settings

should also be indicated in the devices lists. The web app should not be hanging on “Syncing”

indicators in place of the device’s name. Similarly, none of the valves should get stuck with an

“opening” or “closing” indicator for longer than three minutes. In general, the web app should be

responsive to whatever change the user makes within a matter of minutes.

Of course, the user should see the actuator move after sending a close or open command

to the valve (matter of minutes).

How the user can troubleshoot the product

Likely errors/symptoms:

● Web app giving “Internal Server Error”

● Valve or Pylon not updating in webapp

● Device LED either staying on indefinitely

● Device LED never turning on

● Actuator not moving

● Device getting hung up on “Syncing”

● Valve getting hung up on “opening” or “closing”

Regarding issues having to do with devices: check all connections and reboot by disconnecting

and reconnecting the battery.

Regarding issues with the hub: complete reboot.

34

The team does not anticipate the user having the skills or equipment to replace surface

mount parts or interact with the Raspberry Pi and edit files. If a simple reboot is not sufficient to

remove errors, the problem is likely beyond the abilities of the user to fix. Please contact

customer service or send the product in to be repaired.

35

To-Market Design Changes

As a result of budget and time limitations, the functional prototype created differs from

the product that would be introduced to the market. The greatest change that would need to be

made is the valve subsystem. In the prototype, a 12 V linear actuator with the capability of

pushing 1500 N and pulling 1000 N was used. The device did not open or close a valve, but

instead moved up or down based on whether or not water was sensed by the pylon. In real life, a

motor would need to either be retrofitted to the preexisting valve, or a brand new valve would

need to be installed. In either case, the motor would need to be much larger and have greater

capabilities than the one used for the prototype.

Generally, fields that utilize flood irrigation require the farmer to turn a wheel that closes

the valve, stopping the water from flowing. Rather than having a new valve be installed entirely

(this would be very expensive), the best way to prepare this system for commercial use would

first be to find a motor capable of turning the wheel. Once an acceptable motor has been

determined, the system should be fitted with a method to decide when the valve is fully open and

fully closed. This would tell the motor when to stop turning the wheel. Finally, hardware would

need to be designed to attach the motor to the pipe water exits through.

While the motor and valve subsystem would need to be upgraded in order to be brought

to the market, the other aspects of the prototypes are market-ready. The pylon is robust enough

to withstand high winds, rains, and should indefinitely run as a result of a solar charging system

that is capable of charging the battery as well as a battery that will take a long time to drain as a

result of the low level of power the system requires to run effectively. Similarly, the app is ready

36

for download by customers and would effectively provide a way to remotely control the system

in a cosmetically pleasing and simple manner. Finally, the central hub is ready for installation

into the home of the irrigation in question.

37

Conclusion

Overall, this project was successful in meeting its design goals. All constraints were met

and, aside from some valve fitting to pre-existing floodgates, the product could serve as a

prototype for a commercially-used system in the future.

The wireless network system offers a modular solution that can scaled up or down

depending on the needs of the farmer. The pylons are robust in physical and software build to

handle the New Mexico elements and requirements for performing as designed in the field. The

irrigation system also removes the strenuous physical effort required to reach and open a 300 lb

floodgate with a wireless linear actuator control system. To cap off the system, the pylons and

valves can be monitored and controlled from the comfort of your home. As previously stated,

flood irrigation is a daunting process that requires the prolonged attention of the farmer in order

to properly care for crops without exposing him to property damage or the wasting resources.

Rather than spending 24 to 36 hours every two to three weeks grounded and enduring the

demanding irrigation process, farmers will now be able to rely on a reliable, effective, and

autonomous irrigation system that takes the human out of the process.

38

Appendices

A: Circuit Diagrams

Figure 13. Pylon schematic.

39

Figure 14. Pylon board.

40

Figure 15. Valve schematic.

41

Figure 6. Valve board.

B: Pylon Code (as seen in Arduino IDE using C syntax):

pylon_10_final.ino

//This is the code running on every pylon device. It proceeds as follows:
//-check EEPROM for identifiers, wait for Sync if identifiers not present
//-if Sync performed, save identifiers to EEPROM

42

//-connect to WiFi and establish MQTT communications - save new identity if need be
//-read moisture sensor and publish wet/dry status to hub, wait for commands
//-if commanded, erase EEPROM or specifically delete identity
//-sleep for duration of time determined by hub command
//Comments are found throughout the code, demarcating and describing main functions.
//Serial prints are included also - they were essential for debugging and
//offer additional insight as to the form of the program.
//Following the bulk of the code are our callback and access point functions.

//=============Libraries=========
#include <EEPROM.h>
#include <ESP8266WiFi.h>
#include <PubSubClient.h>
//===============================

//===================GLobal Declarations==============
//Identity Declarations
char identity[32];
int identityLength;
boolean identityReset;
boolean identityResetSet = false;
boolean identityDecided = false;
boolean identityCorrectLength = false;

//Sleep/Awake Declarations
boolean wake = true;
boolean wakeSet = false;

//Reset Declarations
boolean reset;
boolean resetSet = false;

//IO Declarations
const int SWITCH = 5;
const int LED = 4;

//Function to Set Up Callback
void callback(const MQTT::Publish& pub);

//Function to set up access point
void setupWiFi();

//==============Setup==================
void setup() {
 Serial.begin(115200);
 EEPROM.begin(512);
 pinMode(SWITCH, INPUT);
 pinMode(LED, OUTPUT);
 pinMode(A0, INPUT);
 pinMode(12, OUTPUT);
 digitalWrite(12, HIGH);
}
//======================================

//========================Code Officially Begins========================
void loop() {
 //-------------Main Declarations------------------------
 //Moisture Measurement Declarations
 int waterPin = A0;
 int waterValue = 0;
 int waterThreshold = 50;

43

 String waterLevel;

 //Character Arrays to Store Identifiers
 char ssid[32];
 char password[32];
 char ip[32];

 //Sleep Timer Declarations
 int sleepMultiplier = 3;
 int sleepTime;

 //Publish and Subscribe Declarations
 String pylon = "pylon";
 String command = "commandpylon";

 //Variables for Looping
 char i;
 int g;

 //Tracking Addresses while reading and writing
 int addrRead = 0;
 int addrWrite = 0;
 int firstAddress = 0;

 //Checking if EEPROM full or not
 char eepromCheck;
 char identityCheck;
 boolean infoIn;

 //Integers recording lengths of Identifiers
 int ssidLength;
 int passLength;
 int ipLength;
 int stringLength;

 //LED Control
 int ledState = LOW;

 //Timer Variables
 unsigned long currentMillis;
 unsigned long previousMillis;
 long waitLightInterval = 2000;
 long syncTimeout = 240000;
 long wifiTimeout = 10000;

 //---

 //------------------------ Check EEPROM for stored data ------------
 eepromCheck = EEPROM.read(firstAddress);
 identityCheck = EEPROM.read(96); //this is the first address corresponding to the identity of the pylon
 //--
 delay(1000);

 //------------------If EEPROM Empty, no identifiers are stored - initiate Sync------
 ////if first address null, there are no identifiers present
 if (eepromCheck == '\0')
 {

44

 Serial.println("No info, waiting for sync");
 //Declarations for Loading Identifiers
 boolean passwordIn = false; //true if pylon has received suitable password
 boolean ssidIn = false; //true if pylon has received suitable ssid
 boolean ipIn = false; //true if pylon has received suitable ip address
 boolean identityIn = false; //true if pylon has received suitable identity
 boolean entryLength; //only true if submitted message is under 32 characters
 char charCatch;
 int j;

 previousMillis = millis();
 //Standby until button hit
 while (digitalRead(SWITCH) == HIGH) {
 currentMillis = millis();
 if (currentMillis - previousMillis >= waitLightInterval) {
 // save the last time you blinked the LED
 previousMillis = currentMillis;

 // if the LED is off turn it on and vice-versa:
 if (ledState == LOW) {
 ledState = HIGH;
 } else {
 ledState = LOW;
 }
 // set the LED with the ledState of the variable:
 digitalWrite(LED, ledState);
 }
 //Serial.println("waiting for Sync button");
 delay(500);
 }

 //Start Up Access Point
 WiFiServer server(80);
 setupWiFi();
 server.begin();
 Serial.println("button hit");
 previousMillis = millis();

 //Listen for identifiers from hub
 while (!passwordIn || !ssidIn || !ipIn || !identityIn) //all four identifiers must be received
 {
 entryLength = true; //assume incoming entry is correct length

 // Check if a client has connected
 WiFiClient client = server.available();
 if (client) {
 Serial.println("client connected");
 }

 // Read the first line of the request
 String req = client.readStringUntil('\r'); //req holds the submission from the hub

45

 //Remove unnecessary components of submission (chars added that are unneeded)
 int trim = req.length() - 9;
 req.remove(trim);
 Serial.println(req);
 client.flush();

 //if ssid sent, record as ssid
 if (req.indexOf("ssid/") != -1) {
 req.remove(0, 10);
 req.toCharArray(ssid, 32);
 ssidLength = req.length();
 ssidIn = true;
 if (ssidLength > 32) {
 Serial.println("too long");
 entryLength = false;
 ssidIn = false;
 }
 Serial.print("ssidLength is:");
 Serial.println(ssidLength);

 Serial.print("ssid in: ");
 Serial.print(ssid);
 }

 //if password sent, record as password
 else if (req.indexOf("password/") != -1) {
 req.remove(0, 14);
 req.toCharArray(password, 32);
 passLength = req.length();
 passwordIn = true;
 if (passLength > 32) {
 entryLength = false;
 passwordIn = false;
 }
 Serial.print("passLength is:");
 Serial.println(passLength);
 Serial.print("Password in: ");
 Serial.print(password);
 }

 //if ip address sent, record as ip address
 else if (req.indexOf("ip/") != -1) {
 req.remove(0, 8);
 req.toCharArray(ip, 32);
 ipLength = req.length();
 ipIn = true;
 if (ipLength > 32) {
 entryLength = false;
 ipIn = false;
 }
 Serial.print("ipLength is:");
 Serial.println(ipLength);
 Serial.print("IP in: ");
 Serial.print(ip);
 }

 //if identity sent, record as identity
 else if (req.indexOf("identity/") != -1) {
 req.remove(0, 14);
 req.toCharArray(identity, 32);
 identityLength = req.length();

46

 identityIn = true;
 if (identityLength > 32) {
 entryLength = false;
 identityIn = false;
 }
 Serial.print("identityLength is:");
 Serial.println(identityLength);
 Serial.print("Identity in: ");
 Serial.print(identity);
 }
 //--

 //alert the hub if the sent string is too many characters (over 32)
 if (!entryLength) {
 req = "too long";
 }

 //Compose Response
 String s = "HTTP/1.1 200 OK\r\n";
 s += "Content-Type: text/html\r\n\r\n";
 s += "<!DOCTYPE HTML>\r\n<html>\r\n";
 s += "String is";
 s += "
";
 s += req;

 // Send the response to the client
 client.print(s);
 delay(1);

 //Timer
 currentMillis = millis();

 if (ledState == LOW) {
 ledState = HIGH;
 //Serial.println("now high");
 } else {
 ledState = LOW;
 //Serial.println("now low");
 }
 digitalWrite(LED, ledState);

 //Pull out of loop and restart device if nobody there
 if (currentMillis - previousMillis >= syncTimeout) {
 previousMillis = currentMillis;
 Serial.println("Going to sleep - nobody talking");
 goto initiateSleep;
 }

 }
 Serial.println("Identifiers found");
 infoIn = true; //identifiers in place; proceed with MQTT
 delay(5000);
 digitalWrite(LED, LOW);
 WiFi.mode(WIFI_OFF);

 //--------------------------Record All Credentials------------------------
 //Start with SSID Addresses

47

 Serial.print(" SSID length is ");
 Serial.println(ssidLength);
 delay(500);
 addrWrite = 0;
 int ssidStart = addrWrite;
 Serial.print("starting at address ");
 Serial.println(ssidStart);
 delay(500);
 int ssidEnd = addrWrite + ssidLength;
 Serial.print("ending at address ");
 Serial.println(addrWrite);

 //write ssid to ssid addresses
 for (addrWrite; addrWrite <= ssidEnd; addrWrite++) {
 EEPROM.write(addrWrite, ssid[addrWrite - ssidStart]);
 EEPROM.commit();
 Serial.print("Address ");
 Serial.print(addrWrite);
 Serial.print(" has :");
 Serial.println(ssid[addrWrite - ssidStart]);
 }

 //prepare to write password - calculate length, startpoint, endpoint
 Serial.print(" Password length is ");
 Serial.println(passLength);
 delay(500);
 addrWrite = 32;
 int passStart = addrWrite;
 Serial.print("starting at address ");
 Serial.println(addrWrite);
 delay(500);
 int passEnd = addrWrite + passLength;
 Serial.print("ending at address ");
 Serial.println(passEnd);

 //write password to password addresses
 for (addrWrite; addrWrite <= passEnd; addrWrite++) {
 EEPROM.write(addrWrite, password[addrWrite - passStart]);
 EEPROM.commit();
 Serial.print("Address ");
 Serial.print(addrWrite);
 Serial.print(" has :");
 Serial.println(password[addrWrite - passStart]);
 }

 //prepare for EEPROM writing - calculate startpoint, endpoint, and length
 Serial.print(" ip length is ");
 Serial.println(ipLength);
 delay(500);
 addrWrite = 64;
 int ipStart = addrWrite;
 Serial.print("starting at address ");
 Serial.println(addrWrite);
 delay(500);
 int ipEnd = addrWrite + ipLength;
 Serial.print("ending at address ");
 Serial.println(ipEnd);

 //loop through and write to ip address addresses
 for (addrWrite; addrWrite <= ipEnd; addrWrite++) {

48

 EEPROM.write(addrWrite, ip[addrWrite - ipStart]);
 EEPROM.commit();
 Serial.print("Address ");
 Serial.print(addrWrite);
 Serial.print(" has :");
 Serial.println(ip[addrWrite - ipStart]);
 }

 //figure out addresses to store identity
 Serial.print(" identity length is ");
 Serial.println(identityLength);
 delay(500);
 addrWrite = 96;
 int identityStart = addrWrite;
 Serial.print("starting at address ");
 Serial.println(addrWrite);
 delay(500);
 int identityEnd = addrWrite + identityLength;
 Serial.print("ending at address ");
 Serial.println(identityEnd);

 //store identity
 for (addrWrite; addrWrite <= identityEnd; addrWrite++) {
 EEPROM.write(addrWrite, identity[addrWrite - identityStart]);
 EEPROM.commit();
 Serial.print("Address ");
 Serial.print(addrWrite);
 Serial.print(" has :");
 Serial.println(identity[addrWrite - identityStart]);

 }
 }
 //-------------end of access point; following is if EEPROM loaded----
 else if (eepromCheck != '\0') {
 Serial.print("Info Found, Starting Read Loop");
 for (int k = 0; k <= 3; k++) {

 //Assign Correctly to SSID, Password, or IP Address
 switch (k) {

 case 0://SSID

 stringLength = 0;
 //Read Loop
 addrRead = 0; //ssid starts at address 0
 do {
 Serial.println("Reading SSID");
 i = EEPROM.read(addrRead);
 ssid[stringLength] = EEPROM.read(addrRead);
 Serial.println(i);
 addrRead ++;
 stringLength ++;
 } while (i != '\0' && stringLength <= 32);
 delay(1000);
 Serial.print("SSID is ");
 Serial.println(ssid);
 ssidLength = stringLength - 1;
 break;

 case 1://Password

49

 stringLength = 0;
 addrRead = 32;
 //Read
 do {
 Serial.println("Reading Password");
 i = EEPROM.read(addrRead);
 password[stringLength] = EEPROM.read(addrRead);
 Serial.println(i);
 //delay(1000);
 addrRead ++;
 stringLength ++;
 } while (i != '\0' && stringLength <= 32);
 delay(1000);
 Serial.print("Password is ");
 Serial.println(password);
 passLength = stringLength - 1;
 break;

 case 2://IP Address

 stringLength = 0;
 addrRead = 64;
 //Read
 do {
 Serial.println("Reading IP Address");
 i = EEPROM.read(addrRead);
 ip[stringLength] = EEPROM.read(addrRead);
 Serial.println(i);
 //delay(1000);
 addrRead ++;
 stringLength ++;
 } while (i != '\0' && stringLength <= 32);
 delay(1000);
 Serial.print("IP is ");
 Serial.println(ip);
 ipLength = stringLength - 1;
 break;

 case 3://Identity

 //if there is no identity (having been erased from an earlier cycle) then don't bother reading it
 if (identityCheck == '\0') {
 break;
 }
 stringLength = 0;
 addrRead = 96;
 //Read Loop
 do {
 Serial.println("Reading Identity");
 i = EEPROM.read(addrRead);
 identity[stringLength] = EEPROM.read(addrRead);
 Serial.println(i);
 //delay(1000);
 addrRead ++;
 stringLength ++;
 } while (i != '\0' && stringLength <= 32);
 delay(1000);
 Serial.print("Identity is ");
 Serial.println(identity);
 identityLength = stringLength - 1;

50

 break;

 }
 }
 infoIn = true; //identifiers in place, proceed with MQTT
 }
 //---

 //--------------------------if EEPROM has info - > connect----------------------------
 if (infoIn) { //first, check if identifiers are in place
 Serial.println("made it to connect part");
 WiFiClient wf_client; // instantiate wifi client
 PubSubClient client(wf_client, ip); // pass to pubsub
 Serial.println();
 Serial.println();
 Serial.println(F("Modified pubsub client basic code using modified pubsub software"));

 // Connect to WIFI of Router.
 Serial.println(); Serial.println();
 Serial.print("Connecting to ");
 Serial.println(ssid);

 //Set Time Loop
 previousMillis = millis();

 client.set_callback(callback);
 WiFi.begin(ssid, password);
 while (WiFi.status() != WL_CONNECTED) {
 currentMillis = millis();
 delay(500);
 Serial.print(".");
 if (ledState == LOW) {
 ledState = HIGH;
 } else {
 ledState = LOW;
 }
 digitalWrite(LED, ledState);

 //Pull out of loop and restart device if WiFi not found
 if (currentMillis - previousMillis >= wifiTimeout) {
 previousMillis = currentMillis;
 Serial.println("Going to sleep - no wifi");
 goto initiateSleep;
 }

 }
 Serial.println();
 Serial.println("WiFi connected");
 Serial.println("IP address: "); Serial.println(WiFi.localIP());
 //---

 //-----------------------------check moisture sensor-----------------------------
 waterValue = analogRead(waterPin);
 if (waterValue > waterThreshold) {
 waterLevel = "wet";
 }
 else {

51

 waterLevel = "dry";
 }

 //---

 //---------------------------------initiating mqtt cycle-------------------------
 Serial.println("Starting Loop");
 if (WiFi.status() == WL_CONNECTED) {
 if (!client.connected()) {
 if (client.connect("mydevice", "Pylon code", 0 , false, "pylon disconnected")) {
 digitalWrite(LED, HIGH);
 Serial.println("MQTT Connected");
 Serial.println("connected and stuff");

 //store identity in EEPROM
 if (identityCheck == '\0' || eepromCheck == '\0') {
 Serial.println("no identity found");

 //identity sync, if identity not already present
 if (eepromCheck != '\0') {
 Serial.println("identity only thing missing, waiting for hub command");
 identityDecided = false;
 client.subscribe("commandIdentity");
 client.publish("identity", "ready for identity");
 do {
 client.loop();
 delay(2000);
 Serial.print("identity decided is : ");
 Serial.println(identityDecided);
 if (!identityCorrectLength) {
 client.publish("identity", "too long");
 }
 if (!client.connected()) {
 Serial.println("Lost MQTT, jumping out of loop, sleeping and trying again");
 identityDecided = true;

 }
 } while (!identityDecided);
 Serial.print("identity is : ");
 Serial.println(identity);
 client.publish("identity received", "identity"); //added for 2_2
 client.unsubscribe("commandIdentity");
 }

 //figure out addresses to store identity
 Serial.print(" identity length is ");
 Serial.println(identityLength);
 delay(500);
 addrWrite = 96;
 int identityStart = addrWrite;
 Serial.print("starting at address ");
 Serial.println(addrWrite);
 delay(500);
 int identityEnd = addrWrite + identityLength;
 Serial.print("ending at address ");
 Serial.println(identityEnd);

52

 //store identity
 for (addrWrite; addrWrite <= identityEnd; addrWrite++) {
 EEPROM.write(addrWrite, identity[addrWrite - identityStart]);
 EEPROM.commit();
 Serial.print("Address ");
 Serial.print(addrWrite);
 Serial.print(" has :");
 Serial.println(identity[addrWrite - identityStart]);
 }
 }

 //Publish Waterlevel and Subscribe to Hub
 pylon.concat(identity); //create unique topic string for pylon to speak to hub
 command.concat(identity); // create unique topic string for hub to speak to pylon
 client.publish(pylon, waterLevel); //publish the waterlevel to the hub
 Serial.println("just published, now listening");
 client.subscribe(command); //listen for commands from the hub
 //---

 if (client.connected()) { //poo
 do {
 client.loop();
 delay(2000);
 Serial.println("waiting for responses");
 Serial.print("Wakeset is : ");
 Serial.println(wakeSet);
 Serial.print("Resetset is : ");
 Serial.println(resetSet);
 Serial.print("identityResetSet is : ");
 Serial.println(identityResetSet);
 Serial.print("water at: ");
 Serial.println(analogRead(waterPin));
 if (!client.connected()) {
 Serial.println("Lost MQTT, jumping out of loop, sleeping and trying again");
 reset = false;
 identityReset = false;
 wake = true;
 wakeSet = true;
 resetSet = true;
 identityResetSet = true;

 }
 } while (!wakeSet || !resetSet || !identityResetSet);

 client.loop();
 Serial.print("Wake is : ");
 Serial.print(wake);
 Serial.print("Reset is : ");
 Serial.println(reset);
 Serial.print("Identity Reset is : ");
 Serial.println(identityReset);
 delay(1000);
 Serial.println("about to decide");

 //Calculate Sleep Time from Sleep Commands
 if (wake) {
 Serial.println("test");
 sleepMultiplier = 3;
 }
 else {

53

 sleepMultiplier = 20;
 }
 //--

 //Note: the EEPROM write code (currently associated with the Access Point code) originally
 //belonged here, the idea being that the device would only save Identifiers after a first,
 //successful sync. However, our designed boards didn't always connect reliably - sometimes
 //they would successfully sync and receive identifiers, but the MQTT or WiFi connections
 //would fall through and the identifiers would be unsaved. So instead, the EEPROM saving code
 //is placed right after the identifiers are received in the sync.

 //-----------------------------Reset and Identity Reset---------------------------
 //---------Reset
 if (reset) {
 for (int i = 0; i < 128; i++)
 EEPROM.write(i, '\0');
 EEPROM.commit();
 client.publish(pylon, "reset");
 }
 else if (identityReset) { //-------Identity Reset
 for (int i = 96; i < 128; i++)
 EEPROM.write(i, '\0');
 EEPROM.commit();
 client.publish(pylon, "reset");
 }
 Serial.println("MQTT Disconnected");
 delay(500);
 }
 }
 }
 Serial.println("No Connection");
 delay(500);
 }
 Serial.println("made it to end");
 }
 //Initiate Deep Sleep - End of Cycle
initiateSleep://goto takes program here if any connection cycles took too long
 Serial.println("going to sleep now");
 sleepTime = sleepMultiplier * 1000000;
 ESP.deepSleep(sleepTime, WAKE_NO_RFCAL);

 }

 //192.168.4.1 - IP address of Access Point (for debug purposes)

 //===================Function to set up access point ==============
 void setupWiFi() {
 WiFi.mode(WIFI_AP);

 uint8_t mac[WL_MAC_ADDR_LENGTH];
 String AP_NameString = "irrigateSync";

 char AP_NameChar[AP_NameString.length() + 1];
 memset(AP_NameChar, 0, AP_NameString.length() + 1);

 for (int i = 0; i < AP_NameString.length(); i++)

54

 AP_NameChar[i] = AP_NameString.charAt(i);

 WiFi.softAP(AP_NameChar);
 }
 //===

 //========================Callback Function=======================
 void callback(const MQTT::Publish & pub) {
 // handle message arrived
 Serial.print("Message arrived [");
 Serial.print(pub.topic());
 Serial.print("] ");

 Serial.println(pub.payload_string());
 delay(2000);
 Serial.println();
 //check first three characters of message - having to do with sleep cycle
 if (pub.payload_string().substring(0, 3) == "wak") { //wake command
 wake = true;
 wakeSet = true;
 Serial.println("wake mode");
 }
 else if (pub.payload_string().substring(0, 3) == "slp") { //sleep command
 wake = false;
 wakeSet = true;
 Serial.println("sleep mode");
 }
 //check middle three characters of string - having to do with full reset
 if (pub.payload_string().substring(3, 6) == "rst") {//full reset command
 reset = true;
 resetSet = true;
 Serial.println("Reset");
 }
 else if (pub.payload_string().substring(3, 6) == "sta") {//no reset
 reset = false;
 resetSet = true;
 Serial.println("noReset");
 }
 //check last three characters of message - having to do with identity reset
 if (pub.payload_string().substring(6, 9) == "rst") {//identity reset command
 identityReset = true;
 identityResetSet = true;
 Serial.println("identityReset");
 }
 else if (pub.payload_string().substring(6, 9) == "sta") {//maintain identity command
 identityReset = false;
 identityResetSet = true;
 Serial.println("identitySame");
 }
 else {//only other message that could have been sent would be an identity during an identity sync
 pub.payload_string().toCharArray(identity, 32);
 identityLength = pub.payload_string().length();
 if (identityLength > 32) {
 identityDecided = false;
 identityCorrectLength = false;
 }
 else {
 identityDecided = true;
 identityCorrectLength = true;
 }

55

 Serial.println("identity is reset");
 }
 }

 //==

C: Valve Code (as seen in the Arduino IDE using C syntax):

valve_8_final.ino

//This is the code running on every valve device. It proceeds as follows:
//-check EEPROM for identifiers, wait for Sync if identifiers not present
//-if Sync performed, save identifiers to EEPROM
//-connect to WiFi and establish MQTT communications - save new identity if need be
//-publish an active "ping" to hub, wait for commands
//-if commanded, open or close valve
//-if commanded, erase EEPROM or specifically delete identity
//-sleep for duration of time determined by hub command
//Comments are found throughout the code, demaracating and describing main functions.
//Serial prints are included also - they were essential for debugging and
//offer additional insight as to the form of the program.
//Following the bulk of the code are our callback and access point functions.

//=============Libraries=========
#include <EEPROM.h>
#include <ESP8266WiFi.h>
#include <PubSubClient.h>
//===============================

//===================GLobal Declarations==============
//Declaration for WiFi Access Identity
//const char WiFiAPPSK[] = "sparkfun";

//Identity Declarations
char identity[32];
int identityLength;
boolean identityReset;
boolean identityResetSet = false;
boolean identityDecided = false;
boolean identityCorrectLength = false;

//Sleep/Awake Declarations
boolean wake = true;
boolean wakeSet = false;

//Reset Declarations
boolean reset;
boolean resetSet = false;

//Command Valve
boolean command_close;

56

boolean valve_set = false;

//IO Declarations
const int SWITCH = 5;
const int LED = 4;

//Function to Set Up Callback
void callback(const MQTT::Publish& pub);

//Function to set up access point
void setupWiFi();

//==============Setup==================
void setup() {
 Serial.begin(115200);
 EEPROM.begin(512);
 pinMode(SWITCH, INPUT);
 pinMode(LED, OUTPUT);
 pinMode(14, OUTPUT); //GPIO14 Swithces actuator on
 pinMode(13, OUTPUT);
}
//======================================

//========================Code Officially Begins========================
void loop() {
 //-------------Main Declarations------------------------
 //Valve Identifiers
 char valve_check;
 boolean valve_closed;
 String valve_status;

 //Character Arrays to Store Identifiers
 char ssid[32];
 char password[32];
 char ip[32];

 //Sleep Timer Declarations
 int sleepMultiplier = 3;
 int sleepTime;

 //Publish and Subscribe Declarations
 String valve = "valve";
 String command = "commandvalve";

 //Variables for Looping
 char i;
 int g;

 //Tracking Addresses while reading and writing
 int addrRead = 0;
 int addrWrite = 0;
 int firstAddress = 0;

 //Checking if EEPROM full or not
 char eepromCheck;
 char identityCheck;
 boolean infoIn;

 //Integers recording lengths of Identifiers
 int ssidLength;
 int passLength;

57

 int ipLength;
 int stringLength;

 //LED Control
 int ledState = LOW;

 //Timer Variables
 unsigned long currentMillis;
 unsigned long previousMillis;
 long waitLightInterval = 2000;
 long syncTimeout = 240000;
 long wifiTimeout = 10000;

 //---

 //------------------------ Check EEPROM for stored data ------------
 eepromCheck = EEPROM.read(firstAddress);
 identityCheck = EEPROM.read(96); //this is the first address corresponding to the identity of the valve
 //--
 delay(1000);

 //------------------If EEPROM Empty, no identifiers are stored - initiate Sync------
 ////if first address null, there are no identifiers present
 if (eepromCheck == '\0')
 {
 Serial.println("No info, waiting for sync");
 //Declarations for Loading Identifiers
 boolean passwordIn = false; //true if valve has received suitable password
 boolean ssidIn = false; //true if valve has received suitable ssid
 boolean ipIn = false; //true if valve has received suitable ip address
 boolean identityIn = false; //true if valve has received suitable identity
 boolean entryLength; //only true if submitted message is under 32 characters
 char charCatch;
 int j;

 previousMillis = millis();
 while (digitalRead(SWITCH) == HIGH) {
 currentMillis = millis();
 if (currentMillis - previousMillis >= waitLightInterval) {
 // save the last time you blinked the LED
 previousMillis = currentMillis;

 // if the LED is off turn it on and vice-versa:
 if (ledState == LOW) {
 ledState = HIGH;
 //Serial.println("now high");
 } else {
 ledState = LOW;
 //Serial.println("now low");
 }
 //Serial.println("loop");

 // set the LED with the ledState of the variable:
 digitalWrite(LED, ledState);
 }

58

 //Serial.println("waiting for Sync button");
 delay(500);
 }

 //Start Up Access Point
 WiFiServer server(80);
 setupWiFi();
 server.begin();
 Serial.println("button hit");
 previousMillis = millis();

 //Listen for identifiers from hub
 while (!passwordIn || !ssidIn || !ipIn || !identityIn) //all four identifiers must be received
 {
 entryLength = true; //assume incoming entry is correct length

 // Check if a client has connected
 WiFiClient client = server.available();
 if (client) {
 Serial.println("client connected");
 }

 // Read the first line of the request
 String req = client.readStringUntil('\r'); //req holds the submission from the hub

 //Remove unnecessary components of submission (chars added that are unneeded)
 int trim = req.length() - 9;
 req.remove(trim);
 Serial.println(req);
 client.flush();

 //if ssid sent, record as ssid
 if (req.indexOf("ssid/") != -1) {
 req.remove(0, 10);
 req.toCharArray(ssid, 32);
 ssidLength = req.length();
 ssidIn = true;
 if (ssidLength > 32) {
 Serial.println("too long");
 entryLength = false;
 ssidIn = false;
 }
 Serial.print("ssidLength is:");
 Serial.println(ssidLength);

 Serial.print("ssid in: ");
 Serial.print(ssid);
 Serial.println("finish");
 }

 //if password sent, record as password
 else if (req.indexOf("password/") != -1) {
 req.remove(0, 14);
 req.toCharArray(password, 32);

59

 passLength = req.length();
 passwordIn = true;
 if (passLength > 32) {
 entryLength = false;
 passwordIn = false;
 }
 Serial.print("passLength is:");
 Serial.println(passLength);
 Serial.print("Password in: ");
 Serial.print(password);
 Serial.println("finish");
 }

 //if ip address sent, record as ip address
 else if (req.indexOf("ip/") != -1) {
 req.remove(0, 8);
 req.toCharArray(ip, 32);
 ipLength = req.length();
 ipIn = true;
 if (ipLength > 32) {
 entryLength = false;
 ipIn = false;
 }
 Serial.print("ipLength is:");
 Serial.println(ipLength);
 Serial.print("IP in: ");
 Serial.print(ip);
 Serial.println("finish");
 }

 //if identity sent, record as identity
 else if (req.indexOf("identity/") != -1) {
 req.remove(0, 14);
 req.toCharArray(identity, 32);
 identityLength = req.length();
 identityIn = true;
 if (identityLength > 32) {
 entryLength = false;
 identityIn = false;
 }
 Serial.print("identityLength is:");
 Serial.println(identityLength);
 Serial.print("Identity in: ");
 Serial.print(identity);
 Serial.println("finish");
 }
 //--

 //alert the hub if the sent string is too many characters (over 32)
 if (!entryLength) {
 req = "too long";
 }

 //Compose Response
 String s = "HTTP/1.1 200 OK\r\n";
 s += "Content-Type: text/html\r\n\r\n";
 s += "<!DOCTYPE HTML>\r\n<html>\r\n";
 s += "String is";

60

 s += "
";
 s += req;

 // Send the response to the client
 client.print(s);
 delay(1);

 //Timer
 currentMillis = millis();

 // if the LED is off turn it on and vice-versa:
 if (ledState == LOW) {
 ledState = HIGH;
 //Serial.println("now high");
 } else {
 ledState = LOW;
 //Serial.println("now low");
 }
 digitalWrite(LED, ledState);

 //Pull out of loop and restart device if nobody there
 if (currentMillis - previousMillis >= syncTimeout) {
 previousMillis = currentMillis;
 Serial.println("Going to sleep - nobody talking");
 goto initiateSleep;
 }

 }
 infoIn = true; //identifiers in place; proceed with MQTT
 digitalWrite(LED, LOW);
 WiFi.mode(WIFI_OFF);

 //--------------------------Record All Credentials------------------------
 //Start with SSID Addresses
 Serial.print(" SSID length is ");
 Serial.println(ssidLength);
 delay(500);
 addrWrite = 0;
 int ssidStart = addrWrite;
 Serial.print("starting at address ");
 Serial.println(ssidStart);
 delay(500);
 int ssidEnd = addrWrite + ssidLength;
 Serial.print("ending at address ");
 Serial.println(addrWrite);

 //write ssid to ssid addresses
 for (addrWrite; addrWrite <= ssidEnd; addrWrite++) {
 EEPROM.write(addrWrite, ssid[addrWrite - ssidStart]);
 EEPROM.commit();
 Serial.print("Address ");
 Serial.print(addrWrite);
 Serial.print(" has :");
 Serial.println(ssid[addrWrite - ssidStart]);
 }

 //prepare to write password - calculate length, startpoint, endpoint

61

 Serial.print(" Password length is ");
 Serial.println(passLength);
 delay(500);
 addrWrite = 32;
 int passStart = addrWrite;
 Serial.print("starting at address ");
 Serial.println(addrWrite);
 delay(500);
 int passEnd = addrWrite + passLength;
 Serial.print("ending at address ");
 Serial.println(passEnd);

 //write password to password addresses
 for (addrWrite; addrWrite <= passEnd; addrWrite++) {
 EEPROM.write(addrWrite, password[addrWrite - passStart]);
 EEPROM.commit();
 Serial.print("Address ");
 Serial.print(addrWrite);
 Serial.print(" has :");
 Serial.println(password[addrWrite - passStart]);
 }

 //prepare for EEPROM writing - calculate startpoint, endpoint, and length
 Serial.print(" ip length is ");
 Serial.println(ipLength);
 delay(500);
 addrWrite = 64;
 int ipStart = addrWrite;
 Serial.print("starting at address ");
 Serial.println(addrWrite);
 delay(500);
 int ipEnd = addrWrite + ipLength;
 Serial.print("ending at address ");
 Serial.println(ipEnd);

 //loop through and write to ip address addresses
 for (addrWrite; addrWrite <= ipEnd; addrWrite++) {
 EEPROM.write(addrWrite, ip[addrWrite - ipStart]);
 EEPROM.commit();
 Serial.print("Address ");
 Serial.print(addrWrite);
 Serial.print(" has :");
 Serial.println(ip[addrWrite - ipStart]);
 }

 //figure out addresses to store identity
 Serial.print(" identity length is ");
 Serial.println(identityLength);
 delay(500);
 addrWrite = 96;
 int identityStart = addrWrite;
 Serial.print("starting at address ");
 Serial.println(addrWrite);
 delay(500);
 int identityEnd = addrWrite + identityLength;
 Serial.print("ending at address ");
 Serial.println(identityEnd);

 //store identity
 for (addrWrite; addrWrite <= identityEnd; addrWrite++) {
 EEPROM.write(addrWrite, identity[addrWrite - identityStart]);

62

 EEPROM.commit();
 Serial.print("Address ");
 Serial.print(addrWrite);
 Serial.print(" has :");
 Serial.println(identity[addrWrite - identityStart]);

 }
 }
 //-------------end of access point; following is if EEPROM loaded----
 else if (eepromCheck != '\0') {
 Serial.print("Info Found, Starting Read Loop");
 for (int k = 0; k <= 3; k++) {

 //Assign Correctly to SSID, Password, or IP Address
 switch (k) {

 case 0://SSID

 stringLength = 0;
 //Read Loop
 addrRead = 0; //ssid starts at address 0
 do {
 Serial.println("Reading SSID");
 i = EEPROM.read(addrRead);
 ssid[stringLength] = EEPROM.read(addrRead);
 Serial.println(i);
 addrRead ++;
 stringLength ++;
 } while (i != '\0' && stringLength <= 32);
 delay(1000);
 Serial.print("SSID is ");
 Serial.println(ssid);
 ssidLength = stringLength - 1;
 break;

 case 1://Password

 stringLength = 0;
 addrRead = 32;
 //Read
 do {
 Serial.println("Reading Password");
 i = EEPROM.read(addrRead);
 password[stringLength] = EEPROM.read(addrRead);
 Serial.println(i);
 //delay(1000);
 addrRead ++;
 stringLength ++;
 } while (i != '\0' && stringLength <= 32);
 delay(1000);
 Serial.print("Password is ");
 Serial.println(password);
 passLength = stringLength - 1;
 break;

 case 2://IP Address

 stringLength = 0;
 addrRead = 64;
 //Read
 do {

63

 Serial.println("Reading IP Address");
 i = EEPROM.read(addrRead);
 ip[stringLength] = EEPROM.read(addrRead);
 Serial.println(i);
 //delay(1000);
 addrRead ++;
 stringLength ++;
 } while (i != '\0' && stringLength <= 32);
 delay(1000);
 Serial.print("IP is ");
 Serial.println(ip);
 ipLength = stringLength - 1;
 break;

 case 3://Identity

 //if there is no identity (having been erased from an earlier cycle) then don't bother reading it
 if (identityCheck == '\0') {
 break;
 }
 stringLength = 0;
 addrRead = 96;
 //Read Loop
 do {
 Serial.println("Reading Identity");
 i = EEPROM.read(addrRead);
 identity[stringLength] = EEPROM.read(addrRead);
 Serial.println(i);
 //delay(1000);
 addrRead ++;
 stringLength ++;
 } while (i != '\0' && stringLength <= 32);
 delay(1000);
 Serial.print("Identity is ");
 Serial.println(identity);
 identityLength = stringLength - 1;
 break;

 }
 }
 infoIn = true; //identifiers in place, proceed with MQTT
 }
 //---

 //--------------------------if EEPROM has info - > connect----------------------------
 if (infoIn) { //first, check if identifiers are in place
 Serial.println("made it to connect part");
 WiFiClient wf_client; // instantiate wifi client
 PubSubClient client(wf_client, ip); // pass to pubsub
 Serial.println();
 Serial.println();
 Serial.println(F("Modified pubsub client basic code using modified pubsub software"));

 // Connect to WIFI of Router.
 Serial.println(); Serial.println();
 Serial.print("Connecting to ");
 Serial.println(ssid);

64

 //Set Time Loop
 previousMillis = millis();

 client.set_callback(callback);
 WiFi.begin(ssid, password);
 while (WiFi.status() != WL_CONNECTED) {
 currentMillis = millis();
 delay(500);
 Serial.print(".");
 if (ledState == LOW) {
 ledState = HIGH;
 } else {
 ledState = LOW;
 }
 digitalWrite(LED, ledState);

 //Pull out of loop and restart device if WiFi not found
 if (currentMillis - previousMillis >= wifiTimeout) {
 previousMillis = currentMillis;
 Serial.println("Going to sleep - no wifi");
 goto initiateSleep;
 }

 }
 Serial.println();
 Serial.println("WiFi connected");
 Serial.println("IP address: "); Serial.println(WiFi.localIP());
 //---

 //-----------------------------check valve status-----------------------------
 valve_check = EEPROM.read(125);
 Serial.println(valve_check);
 if (valve_check == 'o') {
 valve_closed = false;
 valve_status = "open";
 }
 else {
 valve_closed = true;
 valve_check = 'c';
 valve_status = "closed";
 }

 EEPROM.write(125, valve_check);
 EEPROM.commit();
 delay(2000);
 Serial.println(EEPROM.read(125));
 Serial.print("just wrote status: ");
 Serial.println(valve_status);
 //---

 //---------------------------------initiating mqtt cycle-------------------------
 Serial.println("Starting Loop");
 if (WiFi.status() == WL_CONNECTED) {
 if (!client.connected()) {
 if (client.connect("mydevice", "Valve Code", 0 , false, "Valve Disconnected")) {
 digitalWrite(LED, HIGH);
 Serial.println("MQTT Connected");

65

 Serial.println("connected and stuff");

 //store identity in EEPROM
 if (identityCheck == '\0' || eepromCheck == '\0') {
 Serial.println("no identity found");

 //do if identity was not just sent from an identity sync
 if (eepromCheck != '\0') {
 Serial.println("identity only thing missing, waiting for hub command");
 identityDecided = false;
 client.subscribe("commandIdentity");
 client.publish("identity", "ready for identity"); //added for version 2_2
 do {
 client.loop();
 delay(2000);
 Serial.print("identity decided is : ");
 Serial.println(identityDecided);
 if (!identityCorrectLength) {
 client.publish("identity", "too long");
 }
 if (!client.connected()) {
 Serial.println("Lost MQTT, jumping out of loop, sleeping and trying again");
 identityDecided = true;
 }
 } while (!identityDecided);
 Serial.print("identity is : ");
 Serial.println(identity);
 client.publish("identity received", "identity");
 client.unsubscribe("commandIdentity");
 }

 //figure out addresses to store identity
 Serial.print(" identity length is ");
 Serial.println(identityLength);
 delay(500);
 addrWrite = 96;
 int identityStart = addrWrite;
 Serial.print("starting at address ");
 Serial.println(addrWrite);
 delay(500);
 int identityEnd = addrWrite + identityLength;
 Serial.print("ending at address ");
 Serial.println(identityEnd);

 //store identity
 for (addrWrite; addrWrite <= identityEnd; addrWrite++) {
 EEPROM.write(addrWrite, identity[addrWrite - identityStart]);
 EEPROM.commit();
 Serial.print("Address ");
 Serial.print(addrWrite);
 Serial.print(" has :");
 Serial.println(identity[addrWrite - identityStart]);
 }
 }

 //Publish Active Signal and Subscribe to Hub
 valve.concat(identity); //create unique topic string for valve to speak to hub
 command.concat(identity); // create unique topic string for hub to speak to valve

66

 client.publish(valve, "active"); //publish the valve status to the hub
 Serial.print("just published, now listening to :");
 Serial.println(command);
 client.subscribe(command); //listen for commands from the hub
 //---

 if (client.connected()) { //poo
 do {
 client.loop();
 delay(2000);
 Serial.println("waiting for responses");
 Serial.print("Wakeset is : ");
 Serial.println(wakeSet);
 Serial.print("Resetset is : ");
 Serial.println(resetSet);
 Serial.print("identityResetSet is : ");
 Serial.println(identityResetSet);
 Serial.print("valve_set is : ");
 Serial.println(valve_set);
 Serial.print("valve is: ");
 Serial.println(valve_status);
 if (!client.connected()) {
 Serial.println("Lost MQTT, jumping out of loop, sleeping and trying again");
 reset = false;
 identityReset = false;
 wake = true;
 wakeSet = true;
 resetSet = true;
 identityResetSet = true;
 valve_set=true;
 }
 } while (!wakeSet || !resetSet || !identityResetSet || !valve_set);

 client.loop();
 Serial.print("Wake is : ");
 Serial.print(wake);
 Serial.print("Reset is : ");
 Serial.println(reset);
 Serial.print("Identity Reset is : ");
 Serial.println(identityReset);
 delay(1000);
 Serial.println("about to decide");

 //Calculate Sleep Time from Sleep Commands
 if (wake) {
 Serial.println("test");
 sleepMultiplier = 3;
 }
 else {
 sleepMultiplier = 20;
 }
 //--

 //Note: the EEPROM write code (currently associated with the Access Point code) originally
 //belonged here, the idea being that the device would only save Identifiers after a first,
 //successful sync. However, our designed boards didn't always connect reliably - sometimes
 //they would successfully sync and receive identifiers, but the MQTT or WiFi connections
 //would fall through and the identifiers would be unsaved. So instead, the EEPROM saving code
 //is placed right after the identifiers are received in the sync.

 //-------------------close or open valve----------------------------------

67

 if (command_close != valve_closed) {
 client.publish("closedtest", "here");
 if (command_close == true) {
 //Serial.println("closing the valve");
 EEPROM.write(125, 'c');
 EEPROM.commit();
 valve_closed = true;
 valve_status = "closed";
 client.publish(valve, valve_status);
 digitalWrite(13, LOW);// Set GPIO13 to low to set direction to "closing"
 delay(200);
 digitalWrite(14, HIGH);// Set GPIO14 to high to power the actuator
 delay(3000);
 digitalWrite(14, LOW);// Set GPIO14 to low to stop the actuator
 delay(500);
 }
 else {
 //Serial.println("opening the valve");
 EEPROM.write(125, 'o');
 EEPROM.commit();
 valve_closed = false;
 valve_status = "open";
 client.publish(valve, valve_status);
 digitalWrite(13, HIGH);// Set GPIO13 to high to set direction to "opening"
 delay(200);
 digitalWrite(14, HIGH);// Set GPIO14 to high to power the actuator
 delay(3000);
 digitalWrite(14, LOW);// Set GPIO14 to low to stop the actuator
 delay(500);

 }

 delay(1);
 Serial.println("just published");

 }

 //--

 //-----------------------------Reset and Identity Reset---------------------------
 //---------Reset
 if (reset) {
 for (int i = 0; i < 128; i++)
 EEPROM.write(i, '\0');
 EEPROM.commit();
 client.publish(valve, "reset");
 }
 else if (identityReset) { //-------Identity Reset
 for (int i = 96; i < 128; i++)
 EEPROM.write(i, '\0');
 EEPROM.commit();
 client.publish(valve, "reset");
 }
 Serial.println("MQTT Disconnected");
 delay(500);
 }
 }
 }
 Serial.println("No Connection");

68

 delay(500);
 }
 Serial.println("made it to end");
 }
 //Initiate Deep Sleep - End of Cycle
initiateSleep://if any connection cycles took too long
 Serial.println("going to sleep now");
 sleepTime = sleepMultiplier * 1000000;
 ESP.deepSleep(sleepTime, WAKE_NO_RFCAL);

}

//192.168.4.1 is IP address of Access Point (for debug purposes)

//===================Function to set up access point ==============
void setupWiFi() {
 WiFi.mode(WIFI_AP);

 uint8_t mac[WL_MAC_ADDR_LENGTH];
 String AP_NameString = "irrigateSync";

 char AP_NameChar[AP_NameString.length() + 1];
 memset(AP_NameChar, 0, AP_NameString.length() + 1);

 for (int i = 0; i < AP_NameString.length(); i++)
 AP_NameChar[i] = AP_NameString.charAt(i);

 WiFi.softAP(AP_NameChar);
}
//===

//========================Callback Function=======================
void callback(const MQTT::Publish & pub) {
 // handle message arrived
 Serial.print("Message arrived [");
 Serial.print(pub.topic());
 Serial.print("] ");

 Serial.println(pub.payload_string());
 delay(2000);
 Serial.println();
 //check first three characters of message - having to do with sleep cycle
 if (pub.payload_string().substring(0, 3) == "wak") {//wake command
 wake = true;
 wakeSet = true;
 Serial.println("wake mode");
 }
 else if (pub.payload_string().substring(0, 3) == "slp") {//sleep command
 wake = false;
 wakeSet = true;
 Serial.println("sleep mode");
 }
 //check lower-middle three characters of message - having to do with full reset
 if (pub.payload_string().substring(3, 6) == "rst") {//initiate full reset
 reset = true;
 resetSet = true;

69

 Serial.println("Resetting Identifiers");
 }
 else if (pub.payload_string().substring(3, 6) == "sta") {//maintain all identifiers
 reset = false;
 resetSet = true;
 Serial.println("Keeping Identifiers");
 }
 //check upper-middle three characters of string - having to do with identity reset
 if (pub.payload_string().substring(6, 9) == "rst") {//command to reset identity
 identityReset = true;
 identityResetSet = true;
 Serial.println("Resetting Name");
 }
 else if (pub.payload_string().substring(6, 9) == "sta") {//command to maintain identity
 identityReset = false;
 identityResetSet = true;
 Serial.println("Keeping Name");
 }
 //check last three characters of message - having to do with commands to open or close valve
 if (pub.payload_string().substring(9, 12) == "cls") {
 command_close = true;
 valve_set = true;
 Serial.println("Want Valve Closed");
 }
 else if (pub.payload_string().substring(9, 12) == "opn") {
 command_close = false;
 valve_set = true;
 Serial.println("Want Valve Open");
 }
 else {//the only other message that could have been sent would be an identity during an identity syn
 pub.payload_string().toCharArray(identity, 32);
 identityLength = pub.payload_string().length();
 if (identityLength > 32) {
 identityDecided = false;
 identityCorrectLength = false;
 }
 else {
 identityDecided = true;
 identityCorrectLength = true;
 }

 Serial.println("identity is reset");
 }
}

//==

D: Hub Code (Python and Server Programs)

Looping Code - Background Code for Hub (Python): send_all_from_files_11.py

#This code is the looping function which loops through all pylons and valves and
#formulates and sends commands based on the content of the files.
#It also writes to the files based on MQTT responses from the devices in real time.
import paho.mqtt.client as mqtt
import time

70

import os
from pathlib import Path

following only used for MQTT debug
def on_connect(client, userdata, flags, rc):
 if rc==0:
 client.connected_flag=True
 else:
 client.connected_flag=False
 print("connected. flag func is: ", client.connected_flag)

def write_to_directories(device_type, device_name, message_thing):
 with open("/home/pi/IrrEEgation/"+device_type+"s/"+device_name, "r") as g:
 state = g.readlines()
 g.close
 print(message_thing)
 if message_thing == "reset":
 os.remove("/home/pi/IrrEEgation/"+device_type+"s/"+device_name) #remove the file from directory
 client1.unsubscribe("command"+device_type+device_name) #unsubscribe from removed file
 else:
 state[0]=device_name+"\n" #re-affirms identity, indicative of successful sync
 if message_thing!="active": #distinguish pylon response from valve response, assign wet or dry
 state[4]=message_thing+'\n'
 print(state[4])
 with open("/home/pi/IrrEEgation/"+device_type+"s/"+device_name, "w") as g:
 g.writelines(state)
 g.close

 if message_thing=="wet":
 #tell corresponding valve to close
 action_valve=state[5]
 print("looking for ", action_valve)
 check_file=Path("/home/pi/IrrEEgation/valves/"+action_valve)
 if check_file.is_file():
 print("valve found: ", action_valve)
 with open("/home/pi/IrrEEgation/valves/"+action_valve, "r") as g:
 valve_state = g.readlines()
 g.close
 valve_state[4]="closing\n" #closing until valve indicates that it successfully closed
 with open("/home/pi/IrrEEgation/valves/"+action_valve, "w") as g:
 g.writelines(valve_state)
 g.close

def on_message(client1, userdata, message):
 #turn messages into distilled, useful pieces
 message_thing = str(message.payload)[2:-1]
 topic_thing = str(message.topic)
 device_type=topic_thing[0:5]
 device_name = str(message.topic)[5:]
 write_to_directories(device_type, device_name, message_thing)

#define paths for writing and reading
pylon_path= "/home/pi/IrrEEgation/pylons/"
valve_path="/home/pi/IrrEEgation/valves/"
broker_address="192.168.111"
client1 = mqtt.Client("P1")
client1.on_connect= on_connect
client1.on_message=on_message

71

#loop through all pylons and valves
while True:
 client1.connect(broker_address)
 client1.loop_start()
 time.sleep(1)
 print("connected. flag first is: ", client1.connected_flag)
 while client1.connected_flag==True:
 for filename in os.listdir(pylon_path):
 with open(pylon_path+filename, "r") as f:
 state = f.readlines()

 if state[0]=="syncing\n": #if device not fully integrated into system yet, used for identity sync
 client1.publish("commandIdentity", filename)
 #client1.subscribe("pylon"+filename)
 command = "commandpylon"+filename
 listen = "pylon"+filename
 print(command)
 #print(listen)
 if "noReset" in state[1]:
 print("we shall not reset")
 reset_string="sta"
 else:
 print("we shall reset")
 reset_string="rst"

 if "identitySame" in state[2]:
 print("we shall keep the identity the same")
 identity_string = "sta"
 else:
 print("we shall forget our identity")
 identity_string = "rst"

 if "awake" in state[3]:
 print("we shall stay awake")
 sleep_string = "wak"
 else:
 print("we shall sleep")
 sleep_string = "slp"
 command_string=sleep_string+reset_string+identity_string #concatenate to form the full command string
 client1.publish(command,command_string)
 client1.subscribe(listen)

 f.close()

 for filename in os.listdir(valve_path): #repeat for valves
 with open(valve_path+filename, "r") as f:
 state = f.readlines()

 if state[0]=="syncing\n":
 client1.publish("commandIdentity", filename)
 command = "commandvalve"+filename
 listen = "valve"+filename
 print(command)
 #print(listen)
 if "noReset" in state[1]:
 print("we shall not reset")
 reset_string="sta"
 else:
 print("we shall reset")

72

 reset_string="rst"

 if "identitySame" in state[2]:
 print("we shall keep the identity the same")
 identity_string = "sta"
 else:
 print("we shall forget our identity")
 identity_string = "rst"

 if "awake" in state[3]:
 print("we shall stay awake")
 sleep_string = "wak"
 else:
 print("we shall sleep")
 sleep_string = "slp"

 if "close" in state[4]:
 print("we shall close")
 valve_string = "cls"
 elif "closing" in state[4]:
 print("we shall keep closing")
 valve_string = "cls"
 elif "open" in state[4]:
 print("we shall open")
 valve_string = "opn"
 else:
 print("we shall keep opening")
 valve_string = "opn"
 command_string=sleep_string+reset_string+identity_string+valve_string
 client1.publish(command,command_string)
 client1.subscribe(listen)

 f.close()

 time.sleep(10)
 client1.loop_stop()
 print("not connected")
 time.sleep(5)

E: Write Function on Hub - Connection from Server to Directories (Python):

write_function3.py

#This code is the function that the Flask server calls to write to the pylon and valve directories.
#Everything the user inputs is traced through this function.
#Files are read line by line as a list, and altered/re-written in the same format.
#Note, valve_state is only the generic name for any list, used for reading and writing. It doesn
#not refer specifically just to valves.
import urllib
import requests
import time
import subprocess
import os

def command_write_to_directories(device_type, device_name, action, action_string):
 path="/home/pi/IrrEEgation/"+device_type+"s/"+device_name
 new_name_path="/home/pi/IrrEEgation/"+device_type+"s/"+action_string
 preset=["name", "noReset", "identitySame", "awake", "dry", "/n"]

73

 if action =="close":# close valve
 with open(path, "r") as g:
 valve_state = g.readlines()
 g.close
 valve_state[4]="closing\n"
 with open(path, "w") as g:
 g.writelines(valve_state)
 g.close
 elif action =="open": #open valve
 with open(path, "r") as g:
 valve_state = g.readlines()
 g.close
 valve_state[4]="opening\n"
 with open(path, "w") as g:
 g.writelines(valve_state)
 g.close
 elif action =="reset": #reset the memory of either device
 with open(path, "r") as g:
 valve_state = g.readlines()
 g.close
 valve_state[1]="Reset\n"
 with open(path, "w") as g:
 g.writelines(valve_state)
 g.close
 elif action =="identityReset": #reset the identity only of either device
 with open(path, "r") as g:
 valve_state = g.readlines()
 g.close
 valve_state[2]="identityReset\n"
 with open(path, "w") as g:
 g.writelines(valve_state)
 g.close
 valve_state[2]="identitySame\n"
 valve_state[0]="syncing\n"
 with open(new_name_path, "w") as g:
 g.writelines(valve_state)
 g.close
 elif action =="sync": #bring a new device (pylon or valve) onto the system
 print('syncing')
 time.sleep(15)#wait for access point to come online
 subprocess.Popen(["sudo", "wifi", "connect", "--ad-hoc", "irrigateSync"]) # force hub to connect to access point
 time.sleep(35)#wait for connection to access point to stabilize
 #send all identifiers to access point
 urllib.request.urlopen("http://192.168.4.1/ssid/dlink-674E")
 print('ssid')
 time.sleep(1)
 urllib.request.urlopen("http://192.168.4.1/identity/"+device_name)
 print('device')
 time.sleep(1)
 urllib.request.urlopen("http://192.168.4.1/ip/192.168.111")
 print('ip')
 time.sleep(1)
 print('password sending')
 urllib.request.urlopen("http://192.168.4.1/password/sgddr00595")
 print('password sent')
 time.sleep(1)
 #write new file for synced device
 preset[0]=device_name+"\n"
 preset[1]="noReset\n"
 preset[2]="identitySame\n"
 preset[3]="awake\n"

74

 if device_type=="pylon":
 preset[4] ="dry\n"
 preset[5]="\n"
 else:
 preset[4]="closed\n"
 with open(path, "w") as g:
 g.writelines(preset)
 g.close
 elif action =="assign_valve": #if valve synced, add final line for open/close command
 with open(path, "r") as g:
 valve_state = g.readlines()
 g.close
 valve_state[5]=action_string
 with open(path, "w") as g:
 g.writelines(valve_state)
 g.close
 elif action =="awake": #send all devices to sleep
 with open(path, "r") as g:
 valve_state = g.readlines()
 g.close
 valve_state[3]= "awake\n"
 with open(path, "w") as g:
 g.writelines(valve_state)
 g.close
 elif action =="asleep": #revert all devices to awake mode
 with open(path, "r") as g:
 valve_state = g.readlines()
 g.close
 valve_state[3]= "asleep\n"
 with open(path, "w") as g:
 g.writelines(valve_state)
 g.close

F: Set IP Address Function on Hub - (Python):

set_ip_func.py

import subprocess

subprocess.Popen(["sudo", "ifconfig", "eth0", "down"])
subprocess.Popen(["sudo", "ifconfig", "eth0", "192.168.111"])
subprocess.Popen(["sudo", "ifconfig", "eth0", "up"])

G: Server Function on Hub - Link between Python functionality and HTML (Python-Flask):

irrEEgation_v2.py

##================================IrrEEgation Application
Code====================================##
Notre Dame Senior Design 2017
Team IrrEEgation
Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
This code was developed to serve as the user interface for the Autonomous Flood Irrigation System.
It incorporates Python, Flask, and HTML to create a simple web application that interacts with
the user and the functional code running MQTT, dynamic file read/write, etc.
##==
======##

75

##====================================Code Starts
Here==##

Import libraries
from flask import Flask, render_template, request
from write_function3 import command_write_to_directories
from dataRefresh2 import pylonDataRefresh, valveDataRefresh
from read_function import read_from_directories
import paho.mqtt.client as mqtt
import time
import os

Initialize Flask application
app = Flask(__name__)

Initialize global arrays with current files for pylons and valves in
/home/pi/IrrEEgation/pylons
/home/pi/IrrEEgation/valves
[pylonData, pylonQuantity] = pylonDataRefresh()
[valveData, valveQuantity] = valveDataRefresh()

Home Page
@app.route('/', methods=['GET', 'POST'])
def index():
 return render_template("index.html")

Pylon Main Page
@app.route('/pylon_home', methods=['GET', 'POST'])
def pylon_home():
 global pylonData, pylonQuantity
 [pylonData, pylonQuantity] = pylonDataRefresh() ## Refresh data
 return render_template("pylon_home.html", pylonData=pylonData, pylonQuantity=pylonQuantity) ## pass data to HTML and
render page

Valve Main Page
@app.route('/valve_home', methods=['GET', 'POST'])
def valve_home():
 global valveData, valveQuantity
 [valveData, valveQuantity] = valveDataRefresh() ## Refresh data
 return render_template("valve_home.html", valveData=valveData, valveQuantity=valveQuantity) ## pass data to HTML and
render page

Sleep Main Page
@app.route('/set_sleep', methods=['GET', 'POST'])
def set_sleep():
 return render_template("set_sleep.html")

Wake Devices Page
@app.route('/set_sleep/awake', methods=['GET', 'POST'])
def awake():
 global pylonData, pylonQuantity, valveData, valveQuantity
 for pylon in range(pylonQuantity):
 command_write_to_directories("pylon", pylonData[pylon][0].rstrip(), "awake", "awake") ## write "awake" to pylon files
 [pylonData, pylonQuantity] = pylonDataRefresh() ## Refresh data

 for valve in range(valveQuantity):
 command_write_to_directories("valve", valveData[valve][0].rstrip(), "awake", "awake") ## write "awake" to valve files
 [valveData, valveQuantity] = valveDataRefresh() ## Refresh data
 return render_template("awake.html")

Sleep Devices Page

76

@app.route('/set_sleep/asleep', methods=['GET', 'POST'])
def sleep():
 global pylonData, pylonQuantity, valveData, valveQuantity
 for pylon in range(pylonQuantity):
 command_write_to_directories("pylon", pylonData[pylon][0].rstrip(), "asleep", "asleep") ## write "asleep" to pylon files
 [pylonData, pylonQuantity] = pylonDataRefresh() ## Refresh data

 for valve in range(valveQuantity):
 command_write_to_directories("valve", valveData[valve][0].rstrip(), "asleep", "asleep") ## write "asleep" to valve files
 [valveData, valveQuantity] = valveDataRefresh() ## Refresh data
 return render_template("asleep.html")

Sync Main Page
@app.route('/sync', methods=['GET', 'POST'])
def sync():
 return render_template("sync.html")

Sync Confirmation Page
@app.route('/sync/new', methods=['GET', 'POST'])
def sync_new():
 device_name = request.form['new_id'] ## Retrieve data from form
 device_type = request.form['Type']
 command_write_to_directories(device_type, device_name, "sync", "sync") ## Write new file to device directory
 return render_template("sync_new.html", device_name=device_name, device_type=device_type)

Pylon Management Page
@app.route('/manage/<pylon>', methods=['GET', 'POST'])
def manage(pylon=None):
 return render_template("manage.html", pylon=pylon) ## Pass pylon name to management page and render page

Valve Management Page
@app.route('/manage/valve/<valve>', methods=['GET', 'POST'])
def manage_valve(valve=None):
 valve_state = read_from_directories("valve", valve) ## Read valve open/close state
 if valve_state[4] == "open\n":
 valve_string = "Close"
 elif valve_state[4] == "closed\n":
 valve_string = "Open"
 elif valve_state[4] == "opening\n":
 valve_string = "Opening"
 else:
 valve_string = "Closing"
 return render_template("manage_valve.html", valve=valve, valve_string=valve_string) ## Pass valve state to management
page and render page

Pylon General Reset Page
@app.route('/reset/<pylon>', methods=['GET', 'POST'])
def reset(pylon=None):
 command_write_to_directories("pylon", pylon, "reset", "Reset") ## Write reset to specified pylon file
 return render_template("reset.html", pylon=pylon)

Valve General Reset Page
@app.route('/reset/valve/<valve>', methods=['GET', 'POST'])
def reset_valve(valve=None):
 command_write_to_directories("valve", valve, "reset", "Reset") ## Write reset to specified valve file
 return render_template("reset_valve.html", valve=valve)

Pylon ID Reset Page
@app.route('/pylon_id_reset/<pylon>', methods=['GET', 'POST'])
def pylon_id_reset(pylon=None):
 return render_template("pylon_id_reset.html", selected='pylon_id_reset', pylon=pylon)

77

Pylon ID Confirmation Page
@app.route('/pylon_id_reset/new/<pylon>', methods=['GET', 'POST'])
def pylon_id_new(pylon=None):
 if request.method == 'POST': ## Write new pylon name to file
 command_write_to_directories("pylon", pylon, "identityReset", request.form['new_id'])
 newpylon = request.form['new_id']
 global pylonData, pylonQuantity
 [pylonData, pylonQuantity] = pylonDataRefresh()
 return render_template("pylon_id_new.html", pylon=pylon, newpylon=newpylon) ## Pass new pylon name and render page

Valve ID Reset Page
@app.route('/id_reset/valve/<valve>', methods=['GET', 'POST'])
def valve_id_reset(valve=None):
 return render_template("valve_id_reset.html", selected='valve_id_reset', valve=valve)

Valve ID Confirmation Page
@app.route('/id_reset/valve/new/<valve>', methods=['GET', 'POST'])
def valve_id_new(valve=None):
 if request.method == 'POST': ## Write new valve name to file
 command_write_to_directories("valve", valve, "identityReset", request.form['new_id'])
 newvalve = request.form['new_id']
 global valveData, valveQuantity
 [valveData, valveQuantity] = valveDataRefresh()
 return render_template("valve_id_new.html", valve=valve, newvalve=newvalve) ## Pass new valve name and render page

Pylon-Valve Assignment Page
@app.route('/change_valve/<pylon>', methods=['GET', 'POST'])
def change_valve(pylon=None):
 return render_template("change_valve.html", pylon=pylon, valveData=valveData, valveQuantity=valveQuantity)

Pylon-Valve Confirmation Page
@app.route('/change_valve/new/<pylon>', methods=['GET', 'POST'])
def change_valve_new(pylon=None):
 if request.method == "POST": ## Write new valve to pylon file
 command_write_to_directories("pylon", pylon, "assign_valve", request.form['Valve'])
 changevalve = request.form['Valve']
 global pylonData, pylonQuantity
 [pylonData, pylonQuantity] = pylonDataRefresh()
 return render_template("change_valve_new.html", pylon=pylon, changevalve=changevalve) ## Pass new valve assignment
and render page

Valve Toggle Control Page
@app.route('/toggle/<valve>', methods=['GET', 'POST'])
def toggle(valve=None):
 if request.method == "POST":
 valve_state = read_from_directories("valve", valve) ## Read valve open/close status
 if valve_state[4] == "open\n":
 command_write_to_directories("valve", valve, "close", "close") ## Write new status to valve file
 valve_string = "is closing"
 elif valve_state[4] == "closed\n":
 command_write_to_directories("valve", valve, "open", "open")
 valve_string = "is opening"
 elif valve_state[4] == "opening\n":
 valve_string = "is opening"
 else:
 valve_string = "is closing"
 global valveData, valveQuantity
 [valveData, valveQuantity] = valveDataRefresh()

 return render_template("toggle.html", valve=valve, valve_string=valve_string)

78

Launch Application on server 192.168.0.100
if __name__ == "__main__":
 app.run(host='192.168.0.100')

H: Data Refresh Function on Hub - (Python):

dataRefresh2.py

##================================IrrEEgation Application
Code====================================##
Notre Dame Senior Design 2017
Team IrrEEgation
Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
This code was developed to serve as a refresh function to update the wep application's
information.
##==
======##

##====================================Code Starts
Here==##

Import libraries
import os

Pylon Data Refresh function
def pylonDataRefresh():

 ## Import pylon data from file
 pylon_path = "/home/pi/IrrEEgation/pylons/" # Pi directory path
 file_list = os.listdir(pylon_path)

 ## Initialize variables and arrays
 count = 0
 pylonQuantity = len(file_list)
 pylonData = [[0 for x in range(6)] for y in range(pylonQuantity)]

 ## Read in from file
 for filename in file_list:
 with open(pylon_path+filename, "r") as f:
 state = f.readlines()

 ## Set data read to pylon data array
 pylonData[count][:] = [state[0], state[1], state[2], state[3], state[4], state[5]]
 count += 1
 f.close()

 return (pylonData, pylonQuantity) ## Return pylon data and number of pylons

Valve Data Refresh function
def valveDataRefresh():
 ## Import valve data from file
 valve_path = "/home/pi/IrrEEgation/valves/" # Pi directory path
 file_list = os.listdir(valve_path)

 ## Initialize variables and arrays
 count = 0
 valveQuantity = len(file_list)
 valveData = [[0 for x in range (5)] for y in range(valveQuantity)]

79

 ## Read in from file
 for filename in file_list:
 with open(valve_path+filename, "r") as f:
 state = f.readlines()

 ## Set data read to valve data array
 valveData[count][:] = [state[0], state[1], state[2], state[3], state[4]]
 count += 1
 f.close()

 return (valveData, valveQuantity) ## Return valve data and number of valves

I: Read Function on Hub - (Python):

read_function.py

##================================IrrEEgation Application
Code====================================##
Notre Dame Senior Design 2017
Team IrrEEgation
Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
This code was developed to read data from pylon and valve files.
##==
======##

##====================================Code Starts
Here==##

Import libraries
import os

Read function
def read_from_directories(device_type, device_name):
 path="/home/pi/IrrEEgation/"+device_type+"s/"+device_name ## Pi directory path
 with open(path, "r") as g:
 ## Read in from file
 data = g.readlines()
 g.close
 print(data)
 return data ## Return data read

J: Web Application Pages - (HTML):

<!--
 ##================================IrrEEgation Application
Code====================================##
 ## Notre Dame Senior Design 2017
 ## Team IrrEEgation
 ## Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
 ## This code was developed to serve as the "all devices asleep" confirmation page.

##==
======##
 -->

<!doctype html>

80

<head>
 <link rel="stylesheet" href='/static/style.css' />
</head>

<form method="GET" action="/">
 <input type="submit" value="H" class="button_home" />
</form>

<h1>All devices are asleep.</h1>

<!--
 ##================================IrrEEgation Application
Code====================================##
 ## Notre Dame Senior Design 2017
 ## Team IrrEEgation
 ## Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
 ## This code was developed to serve as the "all devices awake" confirmation page.

##==
======##
 -->

<!doctype html>

<head>
 <link rel="stylesheet" href='/static/style.css' />
</head>

<form method="GET" action="/">
 <input type="submit" value="H" class="button_home" />
</form>

<h1>All devices are awake.</h1>

<!--
 ##================================IrrEEgation Application
Code====================================##
 ## Notre Dame Senior Design 2017
 ## Team IrrEEgation
 ## Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
 ## This code was developed to serve as the "assign new valve" confirmation page.

##==
======##
 -->

<!doctype html>

<head>
 <link rel="stylesheet" href='/static/style.css' />
</head>

<form method="GET" action="/">
 <input type="submit" value="H" class="button_home" />
</form>

<h1>{{changevalve}} is now the valve for {{pylon}}.</h1>

<!--
 ##================================IrrEEgation Application
Code====================================##

81

 ## Notre Dame Senior Design 2017
 ## Team IrrEEgation
 ## Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
 ## This code was developed to serve as the "assign valve" user input page. It provides the user
 ## with the available valves in a drop-down list.

##==
======##
 -->

<!doctype html>

<head>
 <link rel="stylesheet" href='/static/style.css' />
</head>

<form method="GET" action="/">
 <input type="submit" value="H" class="button_home" />
</form>

<h1>Change valve for {{pylon}}.</h1>

<form method="POST" action="/change_valve/new/{{pylon}}">
 <table class="t2">
 <tr>
 <td>
 <select name="Valve">
 {% for valve in range(valveQuantity) %}
 <option>{{valveData[valve][0]}}</option>
 {% endfor %}
 </select>
 </td>
 <td><input type="submit" value="OK" /></td>
 </tr>
 </table>
</form>

<!--
 ##================================IrrEEgation Application
Code====================================##
 ## Notre Dame Senior Design 2017
 ## Team IrrEEgation
 ## Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
 ## This code was developed to serve as the "new ID" confirmation page.

##==
======##
 -->

<!doctype html>

<head>
 <link rel="stylesheet" href='/static/style.css' />
</head>

<form method="GET" action="/">
 <input type="submit" value="H" class="button_home" />
</form>

<h1>{{pylon}} has been reset to {{newpylon}}</h1>

82

<!--
 ##================================IrrEEgation Application
Code====================================##
 ## Notre Dame Senior Design 2017
 ## Team IrrEEgation
 ## Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
 ## This code was developed to serve as the "ID reset" user input page. It provides the user with
 ## a text input option.

##==
======##
 -->

<!doctype html>

<head>
 <link rel="stylesheet" href='/static/style.css' />
</head>

<form method="GET" action="/">
 <input type="submit" value="H" class="button_home" />
</form>

<h1>ID reset for {{pylon}}</h1>

<form method="POST" action="/id_reset/new/{{pylon}}">
 <table class="t2">
 <tr>
 <td><input type="text" name="new_id" /></td>
 <td><input type="submit" value="OK" /></td>
 </tr>
 </table>
</form>

<!doctype html>

<html>

 <head>
 <link rel="stylesheet" href='/static/style.css' />
 </head>

 <h1>IrrEEgation</h1>

 <table class="t2">
 <tr><td>
 <form method="GET" action="/pylon_home">
 <input type="submit" value="Pylon" class="button" />
 </form>
 </tr></td>
 <tr><td>
 <form method="GET" action="/valve_home">
 <input type="submit" value="Valve" class="button" />
 </form>
 </tr></td>
 <tr><td>
 <form method="GET" action="/set_sleep">
 <input type="submit" value="Sleep" class="button" />
 </form>
 </tr></td>
 <tr><td>

83

 <form method="GET" action="/sync">
 <input type="submit" value="Sync" class="button" />
 </form>
 </tr></td>
 </table>

</html>

<!--
 ##================================IrrEEgation Application
Code====================================##
 ## Notre Dame Senior Design 2017
 ## Team IrrEEgation
 ## Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
 ## This code was developed to serve as the "valve management" user input page. It allows the
 ## user to manage the "reset" status, ID, and open/close status of the valve.

##==
======##
 -->

<!doctype html>

<head>
 <link rel="stylesheet" href='/static/style.css' />
</head>

<form method="GET" action="/">
 <input type="submit" value="H" class="button_home" />
</form>

<h1>Manage {{valve}}</h1>

<table class="t2">
 <tr><td>
 <form method="GET" action="/reset/valve/{{valve}}">
 <input type="submit" value="Reset" class="button" />
 </form>
 </td></tr>
 <tr><td>
 <form method="GET" action="/id_reset/valve/{{valve}}">
 <input type="submit" value="ID Reset" class="button" />
 </form>
 </td></tr>
 <tr><td>
 <form method="POST" action="/toggle/{{valve}}">
 {% if valve_string == "Open" %}
 <input type="submit" value="{{valve_string}}" class="button" />
 {% endif %}
 {% if valve_string == "Close" %}
 <input type="submit" value="{{valve_string}}" class="button" />
 {% endif %}
 {% if valve_string == "Opening" %}
 <input type="submit" disabled value="{{valve_string}}" class="button_dis" />
 {% endif %}
 {% if valve_string == "Closing" %}
 <input type="submit" disabled value="{{valve_string}}" class="button_dis" />
 {% endif %}
 </form>
 </td></tr>

84

</table>

<!--
 ##================================IrrEEgation Application
Code====================================##
 ## Notre Dame Senior Design 2017
 ## Team IrrEEgation
 ## Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
 ## This code was developed to serve as the "pylon management" user input page. It allows the
 ## user to manage the "reset" status, ID, and assigned valve of the pylon.

##==
======##
 -->

<!doctype html>

<head>
 <link rel="stylesheet" href='/static/style.css' />
</head>

<form method="GET" action="/">
 <input type="submit" value="H" class="button_home" />
</form>

<h1>Manage {{pylon}}</h1>

<table class="t2">
 <tr><td>
 <form method="GET" action="/reset/{{pylon}}">
 <input type="submit" value="Reset" class="button" />
 </form>
 </td></tr>
 <tr><td>
 <form method="GET" action="/pylon_id_reset/{{pylon}}">
 <input type="submit" value="ID Reset" class="button" />
 </form>
 </td></tr>
 <tr><td>
 <form method="GET" action="/change_valve/{{pylon}}">
 <input type="submit" value="Valve" class="button" />
 </form>
 </td></tr>
</table>

<!--
 ##================================IrrEEgation Application
Code====================================##
 ## Notre Dame Senior Design 2017
 ## Team IrrEEgation
 ## Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
 ## This code was developed to serve as the pylon main page. Here, the user can monitor all
 ## connected pylons, their sleep statuses, their water statuses, and their assigned valves.
 ## The user is also able to navigate to the management pages for each of the pylons listed.

##==
======##
 -->

<!doctype html>

85

<head>
 <link rel="stylesheet" href='/static/style.css' />
</head>

<form method="GET" action="/">
 <input type="submit" value="H" class="button_home" />
</form>

<h1>Pylons</h1>

<table>
 <tr><th>Name</th><th>Status</th><th>Sensor</th><th>Valve</th></tr>
 {% for pylon in range(pylonQuantity) %}

<tr><td>{{pylonData[pylon][0]}}</td><td>{{pylonData[pylon][3]}}</td><td>{{pylonData[pylon][4]}}</td><td>{{pylonData[
pylon][5]}}</td>
 <td><form method="GET" action="/manage/{{pylonData[pylon][0]}}">
 <input type="submit" value="Manage" class="button" />
 </form>
 </td>
 </tr>
 {% endfor %}
</table>

<!--
 ##================================IrrEEgation Application
Code====================================##
 ## Notre Dame Senior Design 2017
 ## Team IrrEEgation
 ## Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
 ## This code was developed to serve as the "new pylon ID" confirmation page.

##==
======##
 -->

<!doctype html>

<head>
 <link rel="stylesheet" href='/static/style.css' />
</head>

<form method="GET" action="/">
 <input type="submit" value="H" class="button_home" />
</form>

<h1>{{pylon}} has been reset to {{newpylon}}</h1>

<!--
 ##================================IrrEEgation Application
Code====================================##
 ## Notre Dame Senior Design 2017
 ## Team IrrEEgation
 ## Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
 ## This code was developed to serve as the "new pylon ID" user input page. The user is provided
 ## with a text input option to rename the pylon.

##==
======##
 -->

86

<!doctype html>

<head>
 <link rel="stylesheet" href='/static/style.css' />
</head>

<form method="GET" action="/">
 <input type="submit" value="H" class="button_home" />
</form>

<h1>ID reset for {{pylon}}</h1>

<form method="POST" action="/pylon_id_reset/new/{{pylon}}">
 <table class="t2">
 <tr>
 <td><input type="text" name="new_id" /></td>
 <td><input type="submit" value="OK" /></td>
 </tr>
 </table>
</form>

<!--
 ##================================IrrEEgation Application
Code====================================##
 ## Notre Dame Senior Design 2017
 ## Team IrrEEgation
 ## Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
 ## This code was developed to serve as the "valve reset" confirmation page.

##==
======##
 -->

<!doctype html>

<head>
 <link rel="stylesheet" href='/static/style.css' />
</head>

<form method="GET" action="/">
 <input type="submit" value="H" class="button_home" />
</form>

<h1>{{valve}} was successfully reset.</h1>

<!--
 ##================================IrrEEgation Application
Code====================================##
 ## Notre Dame Senior Design 2017
 ## Team IrrEEgation
 ## Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
 ## This code was developed to serve as the "pylon reset" confirmation page.

##==
======##
 -->

<!doctype html>

<head>
 <link rel="stylesheet" href='/static/style.css' />

87

</head>

<form method="GET" action="/">
 <input type="submit" value="H" class="button_home" />
</form>

<h1>{{pylon}} was successfully reset.</h1>

<!--
 ##================================IrrEEgation Application
Code====================================##
 ## Notre Dame Senior Design 2017
 ## Team IrrEEgation
 ## Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
 ## This code was developed to serve as the sleep main page. Here the user is able to set all
 ## devices to "awake" or "asleep" mode.

##==
======##
 -->

<!doctype html>

<head>
 <link rel="stylesheet" href='/static/style.css' />
</head>

<form method="GET" action="/">
 <input type="submit" value="H" class="button_home" />
</form>

<h1>Sleep Settings</h1>

<table class="t2">
 <tr><td>
 <form method="GET" action="/set_sleep/awake">
 <input type="submit" value="Wake" class="button" />
 </form>
 </td></tr>
 <tr><td>
 <form method="GET" action="/set_sleep/asleep">
 <input type="submit" value="Sleep" class="button" />
 </form>
 </td></tr>
</table>

<!--
 ##================================IrrEEgation Application
Code====================================##
 ## Notre Dame Senior Design 2017
 ## Team IrrEEgation
 ## Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
 ## This code was developed to serve as the "sync complete" confirmation page.

##==
======##
 -->

<!doctype html>

<head>

88

 <link rel="stylesheet" href='/static/style.css' />
</head>

<form method="GET" action="/">
 <input type="submit" value="H" class="button_home" />
</form>

<h1>{{device_name}} has been added to {{device_type}}s.</h1>

<!--
 ##================================IrrEEgation Application
Code====================================##
 ## Notre Dame Senior Design 2017
 ## Team IrrEEgation
 ## Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
 ## This code was developed to serve as the "user confirmation" of sync. Here the user is able to
 ## verify that she wants to sync a new device.

##==
======##
 -->

<!doctype html>

<head>
 <link rel="stylesheet" href='/static/style.css' />
</head>

<form method="GET" action="/">
 <input type="submit" value="H" class="button_home" />
</form>

<h1>Confirm {{device_name}} as a new {{device_type}}?</h1>

<table class="t2">
 <tr><td>
 <form method="GET" action="/">
 <input type="submit" value="Yes" class="button" />
 </form>
 </td></tr>
</table>

<!--
 ##================================IrrEEgation Application
Code====================================##
 ## Notre Dame Senior Design 2017
 ## Team IrrEEgation
 ## Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
 ## This code was developed to serve as the sync main page. Here the user is able to input a name
 ## and type of new device.

##==
======##
 -->

<!doctype html>

<head>
 <link rel="stylesheet" href='/static/style.css' />
</head>

89

<form method="GET" action="/">
 <input type="submit" value="H" class="button_home" />
</form>

<h1>Sync new device.</h1>

<form method="POST" action="/sync/new">
 <table class="t2">
 <tr>
 <td><input type="text" name="new_id" /></td>
 <td><input type="submit" value="OK" /></td>
 </tr>
 <tr>
 <td>
 <select name="Type">
 <option>pylon</option>
 <option>valve</option>
 </select>
 </td>
 </tr>
 </table>
</form>

<!--
 ##================================IrrEEgation Application
Code====================================##
 ## Notre Dame Senior Design 2017
 ## Team IrrEEgation
 ## Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
 ## This code was developed to serve as the "toggle" confirmation page. The user will be notified
 ## of the valve's performance of the selected operation.

##==
======##
 -->

<!doctype html>

<head>
 <link rel="stylesheet" href='/static/style.css' />
</head>

<form method="GET" action="/">
 <input type="submit" value="H" class="button_home" />
</form>

<h1>{{valve}} {{valve_string}}</h1>

<!--
 ##================================IrrEEgation Application
Code====================================##
 ## Notre Dame Senior Design 2017
 ## Team IrrEEgation
 ## Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
 ## This code was developed to serve as the valve main page. Here the user is able to monitor
 ## all connected valves, their sleep statuses, and their gate statuses. The user is also able to
 ## navigate to the management pages for each valve listed.

##==
======##
 -->

90

<!doctype html>

<head>
 <link rel="stylesheet" href='/static/style.css' />
</head>

<form method="GET" action="/">
 <input type="submit" value="H" class="button_home" />
</form>

<h1>Valves</h1>

<table>
 <tr><th>Name</th><th>Status</th><th>Gate</th></tr>
 {% for valve in range(valveQuantity) %}
 <tr><td>{{valveData[valve][0]}}</td><td>{{valveData[valve][3]}}</td><td>{{valveData[valve][4]}}</td>
 <td><form method="GET" action="/manage/valve/{{valveData[valve][0]}}">
 <input type="submit" value="Manage" class="button" />
 </form>
 </td>
 </tr>
 {% endfor %}
</table>

<!--
 ##================================IrrEEgation Application
Code====================================##
 ## Notre Dame Senior Design 2017
 ## Team IrrEEgation
 ## Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
 ## This code was developed to serve as the "new valve ID" confirmation page.

##==
======##
 -->

<!doctype html>

<head>
 <link rel="stylesheet" href='/static/style.css' />
</head>

<form method="GET" action="/">
 <input type="submit" value="H" class="button_home" />
</form>

<h1>{{valve}} has been reset to {{newvalve}}</h1>

<!--
 ##================================IrrEEgation Application
Code====================================##
 ## Notre Dame Senior Design 2017
 ## Team IrrEEgation
 ## Kenneth Harkenrider, Nico Garcia, Trenton Kuta, Tyler Dale, Ellen Halverson
 ## This code was developed to serve as the "new valve ID" user input page. Here the user is able
 ## to input a new name for the valve.

##==
======##
 -->

91

<!doctype html>

<head>
 <link rel="stylesheet" href='/static/style.css' />
</head>

<form method="GET" action="/">
 <input type="submit" value="H" class="button_home" />
</form>

<h1>ID reset for {{valve}}</h1>

<form method="POST" action="/id_reset/valve/new/{{valve}}">
 <table class="t2">
 <tr>
 <td><input type="text" name="new_id" /></td>
 <td><input type="submit" value="OK" /></td>
 </tr>
 </table>
</form>

Style.css
h1 {
 color: ghostwhite;
 background: forestgreen;
 font-family: "Helvetica";
 text-align: center;
 margin: auto;
 width: 75%;
}

body {
 color: white;
 background: forestgreen;
}

.button {
 background-color: lightgreen;
 color: darkgreen;
 margin: auto;
 width: 150px;
 text-align: center;
 padding: 15px 30px;
 border: 3px solid forestgreen;
 font-family: "Helvetica";
 font-size: 20px;
}

.button:hover {
 color: forestgreen;
 background-color: floralwhite;
}

.button_dis {
 background-color: gray;
 color: darkgray;
 margin: auto;
 text-align: center;
 width: 150px;
 padding: 15px 30px;

92

 border: 3px solid forestgreen;
 font-family: "Helvetica";
 font-size: 20px;
}

.button_home {
 background-color: lightgreen;
 color: darkgreen;
 margin: auto;
 text-align: center;
 padding: 10px 13px;
 border: 1px solid forestgreen;
 font-family: "Helvetica";
 font-size: 30px;
}

table {
 border-collapse: collapse;
 width: 40%;
 margin: auto;
 font-family: "Helvetica";
}

th, td {
 text-align: left;
 padding: 4px;
}

th {
 background-color: darkgreen;
 color: white;
}

.t2 {
 border-collapse: collapse;
 width: 10%;
 margin: auto;
}

93

94

